Incorporation of geological constraints and semivariogram scaling law into geostatistical modeling of metal contents in hydrothermal deposits for improved accuracy

Journal of Geochemical Exploration - Tập 233 - Trang 106901 - 2022
Katsuaki Koike1, Takuya Kiriyama1, Lei Lu2, Taiki Kubo1, Mohamad Nur Heriawan3, Ryoichi Yamada4
1Graduate School of Engineering, Kyoto University, Kyoto, Japan
2School of Urban and Environment, Yunnan University of Finance and Economics, Kunming, China
3Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology, Bandung, Indonesia
4Graduate School of Science, Tohoku University, Sendai, Japan

Tài liệu tham khảo

Abzalov, 2016, 448, 270 Aldworth, 2003, Prediction of nonlinear spatial functionals, J. Stat. Plan. Inference, 112, 3, 10.1016/S0378-3758(02)00321-X Armstrong, 2011 Charifo, 2013, Managing borehole samples of unequal lengths to construct a high-resolution mining model of mineral grades zoned by geological units, J. Geochem. Explor., 132, 209, 10.1016/j.gexplo.2013.07.006 Chen, 2016, Probabilistic and spatial assessment of liquefaction-induced settlements through multiscale random field models, Eng. Geol., 211, 135, 10.1016/j.enggeo.2016.07.002 Chilès, 2012, Geostatistics: modeling spatial uncertainty, 10.1002/9781118136188 Curtis, 2018, Data-driven approach for analyzing hydrogeology and groundwater quality across multiple scales, Groundwater, 56, 377, 10.1111/gwat.12584 Di Federico, 1999, Anisotropy, lacunarity, and upscaled conductivity and its autocovariance in multiscale random fields with truncated power variograms, Water Resour. Res., 35, 2891, 10.1029/1999WR900158 Emery, 2006, TBSIM: a computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method, Comput. Geosci., 32, 1615, 10.1016/j.cageo.2006.03.001 Ertunç, 2013, Geostatistical estimation of coal quality variables by using covariance matching constrained kriging, Int. J. Coal Geol., 112, 14, 10.1016/j.coal.2012.11.014 2004 Goovaerts, 1997 Guastaldi, 2013, A multivariate spatial interpolation of airborne γ-ray data using the geological constraints, Remote Sens. Environ., 137, 1, 10.1016/j.rse.2013.05.027 Hede, 2017, How can satellite imagery be used for mineral exploration in thick vegetation areas?, Geochem. Geophys. Geosyst., 18, 584, 10.1002/2016GC006501 Heriawan, 2008, Identifying spatial heterogeneity of coal resource quality in a multilayer coal deposit by multivariate geostatistics, Int. J. Coal Geol., 73, 307, 10.1016/j.coal.2007.07.005 Holliday, 2007, Advances in geological models and exploration methods for copper ± gold porphyry deposits, 791 Ilyas, 2016, Ni grade distribution in laterite characterized from geostatistics, topography and the paleo-groundwater system in Sorowako, Indonesia, J. Geochem. Explor., 165, 174, 10.1016/j.gexplo.2016.03.002 Isaaks, 1989 Ishihara, 1974 Jesus, 2013, Multi-fractal modelling and spatial Cu-soil anomaly analysis along the southern border of the Iberian Terrane in Portugal, J. Geochem. Explor., 126–1275, 23, 10.1016/j.gexplo.2012.12.010 Journel, 2000, Correcting the smoothing effect of estimators: a spectral postprocessor, Math. Geol., 32, 787, 10.1023/A:1007544406740 Koike, 2006, Spatial correlation structures of fracture systems for deriving a scaling law and modeling fracture distributions, Comput. Geosci., 32, 1079, 10.1016/j.cageo.2006.02.013 Koike, 2015, 3D geostatistical modeling of fracture system in a granitic massif to characterize hydraulic properties and fracture distribution, Tectonophysics, 10.1016/j.tecto.2015.06.008 Koike, 2006, New indices for characterizing spatial models of ore deposits by the use of a sensitivity vector and an influence factor, Math. Geol., 38, 541, 10.1007/s11004-006-9030-3 Koike, 2002, Neural network-based estimation of principal metal contents in the Hokuroku District, Northern Japan, for exploring Kuroko-type deposits, Nat. Resour. Res., 11, 135, 10.1023/A:1015520204066 Lowell, 1970, Lateral and vertical alteration-mineralization zoning in porphyry ore deposits, Econ. Geol., 65, 373, 10.2113/gsecongeo.65.4.373 Maleki, 2015, Joint simulation of grade and rock type in a stratabound copper deposit, Math. Geosci., 47, 471, 10.1007/s11004-014-9556-8 Marinoni, 2003, Improving geological models using a combined ordinary-indicator kriging approach, Eng. Geol., 69, 37, 10.1016/S0013-7952(02)00246-6 Mery, 2020, Constrained kriging: an alternative to predict global recoverable resources, Nat. Resour. Res., 29, 2275, 10.1007/s11053-019-09601-6 Narita, 1977, On the recent prospecting in the Matsumine mine, Min. Geol., 27, 119 Neves, 2019, Updating mining resources with uncertain data, Math. Geosci., 51, 905, 10.1007/s11004-018-9759-5 Nickless, 2018, Resourcing future generations: a contribution by the earth science community, Nat. Resour. Res., 27, 143, 10.1007/s11053-017-9331-x Ohmoto, 1996, Formation of volcanogenic massive sulfide deposits: the kuroko perspective, Ore Geol. Rev., 10, 135, 10.1016/0169-1368(95)00021-6 Ohmoto, 1983, The kuroko and related volcanogenic massive sulfide deposits, Soc. Econ. Geol. Olea, 1991 Olea, 1996, Compensating for estimation smoothing in kriging, Math. Geol., 28, 407, 10.1007/BF02083653 Ortiz, 2006, Geostatistical estimation of mineral resources with soft geological boundaries: a comparative study, J. South. Afr. Inst. Min. Metall., 106, 577 Paithankar, 2018, Grade and tonnage uncertainty analysis of an african copper deposit using multiple-point geostatistics and sequential gaussian simulation, Nat. Resour. Res., 27, 419, 10.1007/s11053-017-9364-1 Paterson, 2018, Spatial variability of australian soil texture: a multiscale analysis, Geoderma, 309, 60, 10.1016/j.geoderma.2017.09.005 Perelló, 1994, Geology, porphyry CuAu, and epithermal CuAuAg mineralization of the Tombulilato district, North Sulawesi, Indonesia, J. Geochem. Explor., 50, 221, 10.1016/0375-6742(94)90026-4 Rodriguez-Galiano, 2012, Downscaling Landsat 7 ETM+ thermal imagery using land surface temperature and NDVI images, Int. J. Appl. Earth Obs. Geoinf., 18, 515 Rossi, 2014 Sato, 1974, Distribution and geological setting of the Kuroko deposits, Min. Geol. Spec., 6, 1 Schofield, 1982 Sillitoe, 1973, The tops and bottoms of porphyry copper deposits, Econ. Geol., 68, 799, 10.2113/gsecongeo.68.6.799 Sillitoe, 2010, Porphyry copper systems, Econ. Geol., 105, 3, 10.2113/gsecongeo.105.1.3 Singer, 1997, Classification of mineral deposits into types using mineralogy with a probabilistic neural network, Nonrenewable Resour., 6, 27, 10.1007/BF02816922 Strebelle, 2002, Conditional simulation of complex geological structures using multiple-point statistics, Math. Geol., 34, 1, 10.1023/A:1014009426274 Suro-Pérez, 1991, Indicator principal component kriging, Math. Geol., 23, 759, 10.1007/BF02082535 Tarnavsky, 2008, Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products, Remote Sens. Environ., 112, 535, 10.1016/j.rse.2007.05.008 van Leeuwen, 2010, Mineral deposits of Sulawesi, 1 Xue, 2017, Characterization of aquifer multiscale properties by generating random fractal field with truncated power variogram model using Karhunen-Loève expansion, Geofluids, 2017, 10.1155/2017/1361289 Yamada, 2011, Relationships between Kuroko volcanogenic massive sulfide (VMS) deposits, felsic volcanism, and island arc development in the northeast Honshu arc, Japan, Mineral. Deposita, 46, 431, 10.1007/s00126-011-0362-7 Yamamoto, 2000, An alternative measure of the reliability of ordinary kriging estimates, Math. Geol., 32, 489, 10.1023/A:1007577916868 Zhang, 1990, Variance as a function of sample support size, Math. Geol., 22, 107, 10.1007/BF00890300 Zhang, 2012, Memory-efficient categorical multi-point statistics algorithms based on compact search trees, Math. Geosci., 44, 863, 10.1007/s11004-012-9412-7