Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy

Nature Structural and Molecular Biology - Tập 10 Số 11 - Trang 899-906 - 2003
Mikel Valle1, Andrey Zavialov2, Wen Li3, Scott M. Stagg4, Jayati Sengupta3, R.C. Nielsen5, Poul Nissen5, Stephen C. Harvey4, Måns Ehrenberg2, Joachim Frank6,7
1Howard Hughes Medical Institute, Health Research Inc. at the, Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA.
2Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala, Sweden
3Wadsworth Center, Empire State Plaza, Albany, USA
4School of Biology, Georgia Institute of Technology, Atlanta, USA#TAB#
5Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C Aarhus C Denmark
6Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, USA
7Howard Hughes Medical Institute, Health Research, Inc. at the Wadsworth Center, Empire State Plaza, Albany, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rodnina, M.V., Pape, T., Fricke, R., Kuhn, L. & Wintermeyer, W. Initial binding of the elongation factor Tu·GTP·aminoacyl-tRNA complex preceding codon recognition on the ribosome. J. Biol. Chem. 271, 646–652 (1996).

Berchtold, H. et al. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365, 126–132 (1993).

Kjeldgaard, M., Nissen, P., Thirup, S. & Nyborg, J. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1, 35–50 (1993).

Dell, V.A., Miller, D.L. & Johnson, A.E. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interaction with aminoacyl-tRNA. A fluorescence study. Biochemistry 29, 1757–1763 (1990).

Kaziro, Y. The role of guanosine-5′-triphosphate in polypeptide chain elongation. Biochim. Biophys. Acta 505, 95–127 (1978).

Stark, H. et al. Visualization of elongation factor Tu on Escherichia coli ribosome. Nature 389, 403–406 (1997).

Agrawal, R.K. et al. Visualization of tRNA movements on the Escherichia coli ribosome during the elongation cycle. J. Cell Biol. 150, 447–459 (2000).

Valle, M. et al. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J. 21, 3557–3567 (2002).

Stark, H. et al. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol. 9, 849–854 (2002).

Mohr, D., Wintermeyer, W. & Rodnina, M.V. GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 41, 12520–12528 (2002).

Rodnina, M.V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanism. Annu. Rev. Biochem. 70, 415–435 (2001).

Thompson, R.C. & Stone, P.J. Proofreading of the codon-anticodon interaction on ribosomes. Proc. Natl. Acad. Sci. USA 74, 198–202 (1977).

Ruusala, T., Ehrenberg, M. & Kurland, C.G. Is there proofreading during polypeptide synthesis? EMBO J. 1, 415–435 (1982).

Pape, T., Wintermeyer, W. & Rodnina, M.V. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of E. coli ribosome. EMBO J. 17, 7490–7497 (1998).

Rodnina, M.V., Fricke, R. & Wintermeyer, W. Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry 33, 12267–12275 (1994).

Rodnina, M.V., Fricke, R., Kohn, L. & Wintermeyer, W. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. EMBO J. 14, 2613–2619 (1995).

Piepenburg, O. et al. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Biochemistry 39, 1734–1738 (2000).

Wolf, H., Chinali, G. & Parmeggiani, A. Mechanism of the inhibition of protein synthesis by kirromycin. Eur. J. Biochem. 75, 67–75 (1977).

Parmeggiani, A. & Stewart, G.W. Mechanism of action of kirromycin-like antibiotics. Annu. Rev. Microbiol. 39, 557–577 (1985).

Wimberly, B. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

Abel, K.M., Yoder, M.D., Hilgenfeld, R. & Jurnak, F. An α to β conformational switch in EF-Tu. Structure 4, 1153–1159 (1996).

Polekhina, G. et al. Helix unwinding in the effector region of elongation factor EF-Tu-GDP. Structure 4, 1141–1151 (1996).

Hilgenfeld, R., Mesters, J. & Hogg, T. Insights into the GTPase mechanism of EF-Tu from structural studies. In The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions (eds. Garret, R.A. et al.) 347–357 (ASM Press, Washington, DC, 2000).

Vogeley, L., Palm, G.J., Mesters, J.R. & Hilgenfeld, R. Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. J. Biol. Chem. 276, 17149–17155 (2001).

Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

Moazed, D., Robertson, J.M. & Noller, H.F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S rRNA. Nature 334, 362–364 (1988).

Hausner, T.P., Atmadja, J. & Nierhaus, K.H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69, 911–923 (1987).

Swart, G.W.M. & Parmeggiani, A. Effects of the mutation glycine-222→aspartic acid on the functions of elongation factor Tu. Biochemistry 26, 2047–2054 (1987).

Vorstenbosch, E., Pape, T., Rodnina, M.V., Kraal, B. & Wintermeyer, W. The G222 mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. EMBO J. 15, 6766–6774 (1996).

Robertus, J.D. et al. Structure of yeast phenylananine tRNA at 3 Å resolution. Nature 250, 546–551 (1974).

Sussman, J.L., Holbrook, S.R., Warrant, R.W., Church, G.M. & Kim, S.H. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. Science 123, 607–630 (1978).

Harvey, S.C., Prabhakaran, M., Mao, B. & McCammon, J.A. Phenylalanine transfer RNA: molecular dynamics simulations. Science 223, 1189–1191 (1984).

O'Connor, M. & Dahlberg, A.E. The involvement of two distinct regions of 23S ribosomal RNA in tRNA selection. J. Mol. Biol. 254, 838–847 (1995).

Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58, 439–458 (1971).

Yarus, M. & Smith, D. tRNA on the ribosome: a Waggle theory. In tRNA: Structure, Biosynthesis, and Function (eds. Söll, D. & RajBahandary, U.) 443–468 (American Society for Microbiology, Washington, DC, 1995).

Hausner, T.P., Atmadja, J. & Nierhaus, K.H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69, 911–923 (1987).

Wriggers, W., Agrawal, R.K., Drew, D.L., McCammon, A. & Frank, J. Domains motions of EF-G bound to the ribosome: insights from a hand-shaking between multi-resolution structures. Biophys. J. 79, 1670–1678 (2000).

Wimberly, B.T., Guymon, R., McCutcheon, J.P., White, S.W. & Ramakrishnan, V. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 97, 491–502 (1999).

Vazquez, D. Inhibitors of Protein Synthesis (Springer, New York, 1979).

Saarma, U., Remme, J., Ehrenberg, M. & Bilgin, N. An A to U transversion at position 1067 of 23S rRNA from Escherichia coli impairs EF-Tu and EF-G function. J. Mol. Biol. 272, 327–335 (1997).

O'Connor, M. & Dahlberg, A.E. The involvement of two distinct regions of 23S ribosomal RNA in tRNA selection. J. Mol. Biol. 254, 838–847 (1995).

Zavialov, A.V., Buckingham, R.H. & Ehrenberg, M. A posttermination ribosomal complex is the guanine exchange factor for peptide release factor RF3. Cell 107, 1–20. (2001).

Rosenthal, P. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single particle electron cryomicroscopy. J. Mol. Biol., in press.

Jones, T.A., Zhou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

Cornell, W.D. et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).