Incorporation of Ca ions into anodic oxide coatings on the Ti-13Nb-13Zr alloy by plasma electrolytic oxidation
Tài liệu tham khảo
Rack, 2006, Titanium alloys for biomedical applications, Mater. Sci. Eng. C, 26, 1269, 10.1016/j.msec.2005.08.032
Atapour, 2011, Corrosion behavior of β titanium alloys for biomedical applications, Mater. Sci. Eng. C, 31, 885, 10.1016/j.msec.2011.02.005
Harun, 2018, A review of powdered additive manufacturing techniques for Ti-6Al-4V biomedical applications, Powder Technol., 331, 74, 10.1016/j.powtec.2018.03.010
Mathieu, 2001, Bioengineered material surfaces for medical applications, Surf. Interface Anal., 32, 303, 10.1002/sia.995
Siemers, 2018, Aluminum- and vanadium-free titanium alloys for application in medical engineering, 477
Silva, 2004, Study of nontoxic aluminum and vanadium-free titanium alloys for biomedical applications, Mater. Sci. Eng. C, 24, 679, 10.1016/j.msec.2004.08.051
Li, 2014, New developments of Ti-based alloys for biomedical applications, Materials, 7, 1709, 10.3390/ma7031709
Guo, 2015, Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength, Sci. Rep., 5, 14688, 10.1038/srep14688
Robin, 2008, Corrosion behavior of Ti-xNb-13Zr alloys in Ringer's solution, Mater. Corros., 59, 929, 10.1002/maco.200805014
Ozaltin, 2017, Microstructure and texture evolutions of biomedical Ti-13Nb-13Zr alloy processed by hydrostatic extrusion, Metall. Mater. Trans. A, 48, 5747, 10.1007/s11661-017-4278-4
Krząkała, 2013, Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys, R. Soc. Chem. Adv., 3, 19725
Simka, 2011, Preliminary investigations on the anodic oxidation of the Ti-13Nb-13Zr alloy in a solution containing calcium and phosphorus, Electrochim. Acta, 56, 9831, 10.1016/j.electacta.2011.08.049
Lederer, 2018, Surface modification of Ti 13Nb 13Zr by plasma electrolytic oxidation, Surf. Coat. Tech., 62, 10.1016/j.surfcoat.2017.12.022
Duarte, 2013, Surface characterization of oxides grown on the Ti–13Nb–13Zr alloy and their corrosion protection, Corr. Sci., 72, 35, 10.1016/j.corsci.2013.02.007
Dzhurinskiy, 2015, Characterization and corrosion evaluation of TiO2: n-HA coatings on titanium alloy formed by plasma electrolytic oxidation, Surf. Coat. Tech., 269, 258, 10.1016/j.surfcoat.2015.01.022
Kazek-Kęsik, 2015, Biofunctionalization of Ti–13Nb–13Zr alloy surface by plasma electrolytic oxidation. Part II, Surf. Coat. Tech., 276, 23, 10.1016/j.surfcoat.2015.06.035
A. Kazek-Kęsik, K. Leśniak, I.S. Zhidkov, D.M. Korotin, A.I. Kukharenko, S.O. Cholakh, I. Kalemba-Rec, K. Suchanek, E.Z. Kurmaev, W. Simka, Influence of alkali treatment on anodized titanium alloys in wollastonite suspension, Metals 7(9) (2017) art. No. 322.
Kazek-Kęsik, 2014, Surface treatment of a Ti6Al7Nb alloy by plasma electrolytic oxidation in a TCP suspension, Arch. Civ. Mech. Eng., 14, 671, 10.1016/j.acme.2013.10.008
Nagai, 2012, Response of osteoblast-like MG63 cells to TiO2 layer prepared by micro-arc oxidation and electric polarization, J. Eur. Ceram. Soc., 32, 2647, 10.1016/j.jeurceramsoc.2012.03.002
Neo, 1998, Temporal and spatial patterns of osteoblast activation following implantation of β-TCP particles into bone, J. Biomed. Res., 39, 71, 10.1002/(SICI)1097-4636(199801)39:1<71::AID-JBM9>3.0.CO;2-F
Kazek-Kęsik, 2015, Biofunctionalization of Ti–13Nb–13Zr alloy surface by plasma electrolytic oxidation. Part I, Surf. Coat. Technol., 276, 59, 10.1016/j.surfcoat.2015.06.034
Simka, 2009, Modification of titanium oxide layer by calcium and phosphorus, Electrochim. Acta, 54, 6983, 10.1016/j.electacta.2009.07.010
Huang, 2005, Preparation and apatite layer formation of plasma electrolytic oxidation film on titanium for biomedical application, Mater. Lett., 59, 185, 10.1016/j.matlet.2004.09.045
Mohedano, 2013, Bioactive plasma electrolytic oxidation coatings - the role of the composition, microstructure, and electrochemical stability, J Biomed Mater Res B Appl Biomater, 101, 1524, 10.1002/jbm.b.32974
Xie, 2012, The use of calcium phosphate-based biomaterials in implant dentistry, J. Mater. Sci. Mater. Med., 23, 853, 10.1007/s10856-011-4535-9
Cheng, 2010, Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula, Acta Biomater., 6, 1569, 10.1016/j.actbio.2009.10.050
Yuan, 2007, Repair of canine mandibular bone defects with bone marrow stromal cells and porous β-tricalcium phosphate, Biomaterials, 28, 1005, 10.1016/j.biomaterials.2006.10.015
EN ISO 4287, 1997
Pamula, 2011, Degradation, bioactivity, and osteogenic potential of composites made of PLGA and two different sol-gel bioactive glasses, Ann. Biomed. Eng., 39, 2114, 10.1007/s10439-011-0307-4
Sowa, 2015, Bioactivity of coatings formed on Ti–13Nb–13Zr alloy using plasma electrolytic oxidation, Mater. Sci. Eng. C, 49, 159, 10.1016/j.msec.2014.12.073
Simka, 2012, Electrochemical polishing of Ti–13Nb–13Zr alloy, Surf. Coat. Technol., 213, 239, 10.1016/j.surfcoat.2012.10.055
Simka, 2013, Formation of bioactive coatings on Ti–13Nb–13Zr alloy for hard tissue implants, RSC Adv., 3, 11195, 10.1039/c3ra23256e
Hussein, 2010, Coating growth behavior during the plasma electrolytic oxidation process, J. Vac. Sci. Technol. A, 28, 766, 10.1116/1.3429583
Jiang, 2010, Plasma electrolytic oxidation treatment of aluminium and titanium alloys, 110
Yerokhin, 1999, Plasma electrolysis for surface engineering, Surf. Coat. Tech., 122, 73, 10.1016/S0257-8972(99)00441-7
Snizhko, 2004, Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions, Electrochim. Acta, 49, 2085, 10.1016/j.electacta.2003.11.027
Matykina, 2010, Optimisation of the plasma electrolytic oxidation process efficiency on aluminium, Surf. Interface Anal., 42, 221, 10.1002/sia.3140
NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 2012); http://srdata.nist.gov/xps/
Chen, 2007, Beach sand from Cancun Mexico: a natural macro- and mesoporous material, J. Mater. Sci., 42, 6018, 10.1007/s10853-006-0970-2
Demri, 1995, XPS study of some calcium compounds, J. Mater. Process. Tech., 55, 311, 10.1016/0924-0136(95)02023-3
Hussein, 2012, A spectroscopic and microstructural study of oxide coatings produced on a Ti–6Al–4V alloy by plasma electrolytic oxidation, Mater. Chem. Phys., 134, 484, 10.1016/j.matchemphys.2012.03.020
Cheng, 2012, The influences of microdischarge types and silicate on the morphologies and phase compositions of plasma electrolytic oxidation coatings on Zircaloy-2, Corros. Sci., 59, 307, 10.1016/j.corsci.2012.03.017
McBeath, 2004, Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment, Dev. Cell, 6, 483, 10.1016/S1534-5807(04)00075-9
Nayab, 2005, Effects of calcium ion implantation on human bone cell interaction with titanium, Biomaterials, 26, 4717, 10.1016/j.biomaterials.2004.11.044