Incorporation of Ca ions into anodic oxide coatings on the Ti-13Nb-13Zr alloy by plasma electrolytic oxidation

Materials Science and Engineering: C - Tập 104 - Trang 109957 - 2019
Joanna Michalska1, Maciej Sowa1, Magdalena Piotrowska1, Magdalena Widziołek2, Grzegorz Tylko2, Grzegorz Dercz3, Robert P. Socha4, Anna M. Osyczka2, W. Simka1,5
1Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice, Poland
2Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa Street 9, 30-060 Kraków, Poland
3Institute of Materials Science, University of Silesia, 75 Pułku Piechoty Street 1a, 41-500, Chorzów, Poland
4Jerzy Haber Institute of Catalysis and Surface Chemistry, Niezapominajek 8 Street, 30-239 Krakow, Poland
5Osteoplant Research and Development, Metalowców 25, 39-200 Dębica, Poland

Tài liệu tham khảo

Rack, 2006, Titanium alloys for biomedical applications, Mater. Sci. Eng. C, 26, 1269, 10.1016/j.msec.2005.08.032 Atapour, 2011, Corrosion behavior of β titanium alloys for biomedical applications, Mater. Sci. Eng. C, 31, 885, 10.1016/j.msec.2011.02.005 Harun, 2018, A review of powdered additive manufacturing techniques for Ti-6Al-4V biomedical applications, Powder Technol., 331, 74, 10.1016/j.powtec.2018.03.010 Mathieu, 2001, Bioengineered material surfaces for medical applications, Surf. Interface Anal., 32, 303, 10.1002/sia.995 Siemers, 2018, Aluminum- and vanadium-free titanium alloys for application in medical engineering, 477 Silva, 2004, Study of nontoxic aluminum and vanadium-free titanium alloys for biomedical applications, Mater. Sci. Eng. C, 24, 679, 10.1016/j.msec.2004.08.051 Li, 2014, New developments of Ti-based alloys for biomedical applications, Materials, 7, 1709, 10.3390/ma7031709 Guo, 2015, Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength, Sci. Rep., 5, 14688, 10.1038/srep14688 Robin, 2008, Corrosion behavior of Ti-xNb-13Zr alloys in Ringer's solution, Mater. Corros., 59, 929, 10.1002/maco.200805014 Ozaltin, 2017, Microstructure and texture evolutions of biomedical Ti-13Nb-13Zr alloy processed by hydrostatic extrusion, Metall. Mater. Trans. A, 48, 5747, 10.1007/s11661-017-4278-4 Krząkała, 2013, Application of plasma electrolytic oxidation to bioactive surface formation on titanium and its alloys, R. Soc. Chem. Adv., 3, 19725 Simka, 2011, Preliminary investigations on the anodic oxidation of the Ti-13Nb-13Zr alloy in a solution containing calcium and phosphorus, Electrochim. Acta, 56, 9831, 10.1016/j.electacta.2011.08.049 Lederer, 2018, Surface modification of Ti 13Nb 13Zr by plasma electrolytic oxidation, Surf. Coat. Tech., 62, 10.1016/j.surfcoat.2017.12.022 Duarte, 2013, Surface characterization of oxides grown on the Ti–13Nb–13Zr alloy and their corrosion protection, Corr. Sci., 72, 35, 10.1016/j.corsci.2013.02.007 Dzhurinskiy, 2015, Characterization and corrosion evaluation of TiO2: n-HA coatings on titanium alloy formed by plasma electrolytic oxidation, Surf. Coat. Tech., 269, 258, 10.1016/j.surfcoat.2015.01.022 Kazek-Kęsik, 2015, Biofunctionalization of Ti–13Nb–13Zr alloy surface by plasma electrolytic oxidation. Part II, Surf. Coat. Tech., 276, 23, 10.1016/j.surfcoat.2015.06.035 A. Kazek-Kęsik, K. Leśniak, I.S. Zhidkov, D.M. Korotin, A.I. Kukharenko, S.O. Cholakh, I. Kalemba-Rec, K. Suchanek, E.Z. Kurmaev, W. Simka, Influence of alkali treatment on anodized titanium alloys in wollastonite suspension, Metals 7(9) (2017) art. No. 322. Kazek-Kęsik, 2014, Surface treatment of a Ti6Al7Nb alloy by plasma electrolytic oxidation in a TCP suspension, Arch. Civ. Mech. Eng., 14, 671, 10.1016/j.acme.2013.10.008 Nagai, 2012, Response of osteoblast-like MG63 cells to TiO2 layer prepared by micro-arc oxidation and electric polarization, J. Eur. Ceram. Soc., 32, 2647, 10.1016/j.jeurceramsoc.2012.03.002 Neo, 1998, Temporal and spatial patterns of osteoblast activation following implantation of β-TCP particles into bone, J. Biomed. Res., 39, 71, 10.1002/(SICI)1097-4636(199801)39:1<71::AID-JBM9>3.0.CO;2-F Kazek-Kęsik, 2015, Biofunctionalization of Ti–13Nb–13Zr alloy surface by plasma electrolytic oxidation. Part I, Surf. Coat. Technol., 276, 59, 10.1016/j.surfcoat.2015.06.034 Simka, 2009, Modification of titanium oxide layer by calcium and phosphorus, Electrochim. Acta, 54, 6983, 10.1016/j.electacta.2009.07.010 Huang, 2005, Preparation and apatite layer formation of plasma electrolytic oxidation film on titanium for biomedical application, Mater. Lett., 59, 185, 10.1016/j.matlet.2004.09.045 Mohedano, 2013, Bioactive plasma electrolytic oxidation coatings - the role of the composition, microstructure, and electrochemical stability, J Biomed Mater Res B Appl Biomater, 101, 1524, 10.1002/jbm.b.32974 Xie, 2012, The use of calcium phosphate-based biomaterials in implant dentistry, J. Mater. Sci. Mater. Med., 23, 853, 10.1007/s10856-011-4535-9 Cheng, 2010, Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula, Acta Biomater., 6, 1569, 10.1016/j.actbio.2009.10.050 Yuan, 2007, Repair of canine mandibular bone defects with bone marrow stromal cells and porous β-tricalcium phosphate, Biomaterials, 28, 1005, 10.1016/j.biomaterials.2006.10.015 EN ISO 4287, 1997 Pamula, 2011, Degradation, bioactivity, and osteogenic potential of composites made of PLGA and two different sol-gel bioactive glasses, Ann. Biomed. Eng., 39, 2114, 10.1007/s10439-011-0307-4 Sowa, 2015, Bioactivity of coatings formed on Ti–13Nb–13Zr alloy using plasma electrolytic oxidation, Mater. Sci. Eng. C, 49, 159, 10.1016/j.msec.2014.12.073 Simka, 2012, Electrochemical polishing of Ti–13Nb–13Zr alloy, Surf. Coat. Technol., 213, 239, 10.1016/j.surfcoat.2012.10.055 Simka, 2013, Formation of bioactive coatings on Ti–13Nb–13Zr alloy for hard tissue implants, RSC Adv., 3, 11195, 10.1039/c3ra23256e Hussein, 2010, Coating growth behavior during the plasma electrolytic oxidation process, J. Vac. Sci. Technol. A, 28, 766, 10.1116/1.3429583 Jiang, 2010, Plasma electrolytic oxidation treatment of aluminium and titanium alloys, 110 Yerokhin, 1999, Plasma electrolysis for surface engineering, Surf. Coat. Tech., 122, 73, 10.1016/S0257-8972(99)00441-7 Snizhko, 2004, Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions, Electrochim. Acta, 49, 2085, 10.1016/j.electacta.2003.11.027 Matykina, 2010, Optimisation of the plasma electrolytic oxidation process efficiency on aluminium, Surf. Interface Anal., 42, 221, 10.1002/sia.3140 NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 2012); http://srdata.nist.gov/xps/ Chen, 2007, Beach sand from Cancun Mexico: a natural macro- and mesoporous material, J. Mater. Sci., 42, 6018, 10.1007/s10853-006-0970-2 Demri, 1995, XPS study of some calcium compounds, J. Mater. Process. Tech., 55, 311, 10.1016/0924-0136(95)02023-3 Hussein, 2012, A spectroscopic and microstructural study of oxide coatings produced on a Ti–6Al–4V alloy by plasma electrolytic oxidation, Mater. Chem. Phys., 134, 484, 10.1016/j.matchemphys.2012.03.020 Cheng, 2012, The influences of microdischarge types and silicate on the morphologies and phase compositions of plasma electrolytic oxidation coatings on Zircaloy-2, Corros. Sci., 59, 307, 10.1016/j.corsci.2012.03.017 McBeath, 2004, Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment, Dev. Cell, 6, 483, 10.1016/S1534-5807(04)00075-9 Nayab, 2005, Effects of calcium ion implantation on human bone cell interaction with titanium, Biomaterials, 26, 4717, 10.1016/j.biomaterials.2004.11.044