Incorporating respondent-driven sampling into web-based discrete choice experiments: preferences for COVID-19 mitigation measures

Health Services and Outcomes Research Methodology - Tập 22 - Trang 297-316 - 2022
Courtney A. Johnson1, Dan N. Tran2, Ann Mwangi3, Sandra G. Sosa-Rubí4, Carlos Chivardi4, Martín Romero-Martínez4, Sonak Pastakia5, Elisha Robinson6, Larissa Jennings Mayo-Wilson7, Omar Galárraga1
1Department of Health Services, Policy, and Practice, Brown University School of Public Health, Providence, USA
2Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, USA
3Department of Behavioural Science, School of Medicine, Moi University, Eldoret, Kenya
4National Institute of Public Health (INSP), Cuernavaca, Mexico
5Center for Health Equity and Innovation, Purdue University College of Pharmacy, Indianapolis, USA
6Purdue University, College of Pharmacy, Indianapolis, USA
7Department of Applied Health Science, Indiana University School of Public Health, Bloomington, USA

Tóm tắt

To slow the spread of COVID-19, most countries implemented stay-at-home orders, social distancing, and other nonpharmaceutical mitigation strategies. To understand individual preferences for mitigation strategies, we piloted a web-based Respondent Driven Sampling (RDS) approach to recruit participants from four universities in three countries to complete a computer-based Discrete Choice Experiment (DCE). Use of these methods, in combination, can serve to increase the external validity of a study by enabling recruitment of populations underrepresented in sampling frames, thus allowing preference results to be more generalizable to targeted subpopulations. A total of 99 students or staff members were invited to complete the survey, of which 72% started the survey (n = 71). Sixty-three participants (89% of starters) completed all tasks in the DCE. A rank-ordered mixed logit model was used to estimate preferences for COVID-19 nonpharmaceutical mitigation strategies. The model estimates indicated that participants preferred mitigation strategies that resulted in lower COVID-19 risk (i.e. sheltering-in-place more days a week), financial compensation from the government, fewer health (mental and physical) problems, and fewer financial problems. The high response rate and survey engagement provide proof of concept that RDS and DCE can be implemented as web-based applications, with the potential for scale up to produce nationally-representative preference estimates.

Tài liệu tham khảo

Abdul-Quader, A.S., Heckathorn, D.D., Sabin, K., Saidel, T.: Implementation and analysis of respondent driven sampling: lessons learned from the field. J. Urban Health Bull. New York Acad. Med. 83(6 Suppl), i1–i5 (2006). https://doi.org/10.1007/s11524-006-9108-8 Albert, A., Anderson, J.A.: On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71(1), 1–10 (1984). https://doi.org/10.2307/2336390 Anderson, R.M., Vegvari, C., Truscott, J., Collyer, B.S.: Challenges in creating herd immunity to SARS-CoV-2 infection by mass vaccination. The Lancet 396(10263), 1614–1616 (2020). https://doi.org/10.1016/S0140-6736(20)32318-7 Baker, F., Intagliata, J.: Quality of life in the evaluation of community support systems. Eval. Program. Plann. 5(1), 69–79 (1982). https://doi.org/10.1016/0149-7189(82)90059-3 Bauermeister, J.A., Zimmerman, M.A., Johns, M.M., Glowacki, P., Stoddard, S., Volz, E.: Innovative recruitment using online networks: lessons learned from an online study of alcohol and other drug use utilizing a web-based, respondent-driven sampling (webRDS) strategy. J. Stud. Alcohol Drugs 73(5), 834–838 (2012). https://doi.org/10.15288/jsad.2012.73.834 Bengtsson, L., Xin, Lu., Nguyen, Q.C., Camitz, M., Le Hoang, N., Nguyen, T.A., Liljeros, F., Thorson, A.: Implementation of web-based respondent-driven sampling among men who have sex with men in Vietnam. PLoS ONE 7(11), e49417 (2012). https://doi.org/10.1371/journal.pone.0049417 Carlsson, F., Martinsson, P.: Design techniques for stated preference methods in health economics. Health Econ. 12(4), 281–294 (2003). https://doi.org/10.1002/hec.729 Caron, J.: Predictors of quality of life in economically disadvantaged populations in Montreal. Soc. Indic. Res. 107(3), 411–427 (2012). https://doi.org/10.1007/s11205-011-9855-0 Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. “COVID-19 Dashboard” (2021). https://coronavirus.jhu.edu/map.html. Accessed 23 Sept Clark, M.D., Determann, D., Petrou, S., Moro, D., de Bekker-Grob, E.W.: Discrete choice experiments in health economics: a review of the literature. Pharmacoeconomics 32(9), 883–902 (2014). https://doi.org/10.1007/s40273-014-0170-x Coast, J., Horrocks, S.: Developing attributes and levels for discrete choice experiments using qualitative methods. J. Health Serv. Res. Pol. 12(1), 25–30 (2007). https://doi.org/10.1258/135581907779497602 Cook, S.J., Niehaus, J., Zuhlke, S.: A warning on separation in multinomial logistic models. Res. Pol. 5(2), 2053168018769510 (2018). https://doi.org/10.1177/2053168018769510 de Bekker-Grob, E.W., Donkers, B., Jonker, M.F., Stolk, E.A.: Sample size requirements for discrete-choice experiments in healthcare: a practical guide. The Patient Patient Cent. Outcomes Res. 8(5), 373–384 (2015). https://doi.org/10.1007/s40271-015-0118-z de Bekker-Grob, E.W., Ryan, M., Gerard, K.: Discrete choice experiments in health economics: a review of the literature. Health Econ. 21(2), 145–172 (2012). https://doi.org/10.1002/hec.1697 de Jong, V.M.T., Eijkemans, M.J.C., van Calster, B., Timmerman, D., Moons, K.G.M., Steyerberg, E.W., van Smeden, M.: Sample size considerations and predictive performance of multinomial logistic prediction models. Stat. Med. 38(9), 1601–1619 (2019). https://doi.org/10.1002/sim.8063 Flaxman, Seth, Swapnil Mishra, Axel Gandy, H. Juliette T. Unwin, Thomas A. Mellan, Helen Coupland, Charles Whittaker, Harrison Zhu, Tresnia Berah, Jeffrey W. Eaton, Mélodie Monod, Pablo N. Perez-Guzman, Nora Schmit, Lucia Cilloni, Kylie E. C. Ainslie, Marc Baguelin, Adhiratha Boonyasiri, Olivia Boyd, Lorenzo Cattarino, Laura V. Cooper, Zulma Cucunubá, Gina Cuomo-Dannenburg, Amy Dighe, Bimandra Djaafara, Ilaria Dorigatti, Sabine L. van Elsland, Richard G. FitzJohn, Katy A. M. Gaythorpe, Lily Geidelberg, Nicholas C. Grassly, William D. Green, Timothy Hallett, Arran Hamlet, Wes Hinsley, Ben Jeffrey, Edward Knock, Daniel J. Laydon, Gemma Nedjati-Gilani, Pierre Nouvellet, Kris V. Parag, Igor Siveroni, Hayley A. Thompson, Robert Verity, Erik Volz, Caroline E. Walters, Haowei Wang, Yuanrong Wang, Oliver J. Watson, Peter Winskill, Xiaoyue Xi, Patrick G. T. Walker, Azra C. Ghani, Christl A. Donnelly, Steven Riley, Michaela A. C. Vollmer, Neil M. Ferguson, Lucy C. Okell, Samir Bhatt, and Covid-Response Team Imperial College: Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584(7820), 257–261 (2020). https://doi.org/10.1038/s41586-020-2405-7 Fleury, M.-J., Grenier, G., Bamvita, J.-M., Tremblay, J., Schmitz, N., Caron, J.: Predictors of quality of life in a longitudinal study of users with severe mental disorders. Health Qual. Life Outcomes 11(1), 92 (2013). https://doi.org/10.1186/1477-7525-11-92 Flynn, T.N.: Using conjoint analysis and choice experiments to estimate QALY values. Pharmacoeconomics 28(9), 711–722 (2010). https://doi.org/10.2165/11535660-000000000-00000 Galárraga, O., Kuo, C., Mtukushe, B., Maughan-Brown, B., Harrison, A., Hoare, J.: iSAY (incentives for South African youth): Stated preferences of young people living with HIV. Soc. Sci. Med. 265, 113333 (2020). https://doi.org/10.1016/j.socscimed.2020.113333 Galárraga, O., Sosa-Rubí, S.G., Infante, C., Gertler, P.J., Bertozzi, S.M.: Willingness-to-accept reductions in HIV risks: conditional economic incentives in Mexico. The Eur. J. Health Econ. HEPAC Health Econ. Prev. Care 15(1), 41–55 (2014). https://doi.org/10.1007/s10198-012-0447-y Ghijben, P., Lancsar, E., Zavarsek, S.: Preferences for oral anticoagulants in atrial fibrillation: a best-best discrete choice experiment. Pharmacoeconomics 32(11), 1115–1127 (2014). https://doi.org/10.1007/s40273-014-0188-0 Heckathorn, D.D.: Respondent-driven sampling: a new approach to the study of hidden populations*. Soc. Probl. 44(2), 174–199 (1997). https://doi.org/10.2307/3096941 Heckathorn, D.D.: Extensions Of respondent-driven sampling: analyzing continuous variables and controlling for differential recruitment. Sociol. Methodol. 37(1), 151–207 (2007). https://doi.org/10.1111/j.1467-9531.2007.00188.x Hensher, D.A., Rose, J.M., Greene, W.H.: Applied Choice Analysis: A Primer. Cambridge University Press, Cambridge (2005) Hequembourg, A.L., Panagakis, C.: Maximizing respondent-driven sampling field procedures in the recruitment of sexual minorities for health research. SAGE Open Med 7, 2050312119829983 (2019). https://doi.org/10.1177/2050312119829983 Hildebrand, J., Burns, S., Zhao, Y., Lobo, R., Howat, P., Allsop, S., Maycock, B.: Potential and challenges in collecting social and behavioral data on adolescent alcohol norms: comparing respondent-driven sampling and web-based respondent-driven sampling. J. Med. Internet Res. 17(12), e285–e285 (2015). https://doi.org/10.2196/jmir.4762 Hobden, B., Turon, H., Bryant, J., Wall, L., Brown, S., Sanson-Fisher, R.: Oncology patient preferences for depression care: a discrete choice experiment. Psychooncology 28(4), 807–814 (2019). https://doi.org/10.1002/pon.5024 Hole, A. R.: “DCREATE: stata module to create efficient designs for discrete choice experiments”. Statistical Software Components S458059, Boston College Department of Economics (2015) Jennings Mayo-Wilson, Larissa, Muthoni Mathai, Grace Yi, Margaret O. Mak’anyengo, Melissa Davoust, Massah L. Massaquoi, Stefan Baral, Fred M. Ssewamala, Nancy E. Glass, and Nahedo Study Group: Lessons learned from using respondent-driven sampling (RDS) to assess sexual risk behaviors among Kenyan young adults living in urban slum settlements: a process evaluation. PLoS ONE 15(4), e0231248 (2020). https://doi.org/10.1371/journal.pone.0231248 Kendall, C., Kerr, L.R.F.S., Gondim, R.C., Werneck, G.L., Macena, R.H.M., Pontes, M.K., Johnston, L.G., Sabin, K., McFarland, W.: An Empirical comparison of respondent-driven sampling, time location sampling, and snowball sampling for behavioral surveillance in men who have sex with men, Fortaleza, Brazil. AIDS Behav. 12(1), 97 (2008). https://doi.org/10.1007/s10461-008-9390-4 Kroenke, K. Spitzer, R.L., Williams, J.B.W.: The patient health questionnaire-2: validity of a two-item depression screener. Med. Care 41 (11) (2003) Lancsar, E., Fiebig, D.G., Hole, A.R.: Discrete choice experiments: a guide to model specification, estimation and software. Pharmacoeconomics 35(7), 697–716 (2017). https://doi.org/10.1007/s40273-017-0506-4 Lancsar, E., Louviere, J.: Conducting discrete choice experiments to inform healthcare decision making. Pharmacoeconomics 26(8), 661–677 (2008). https://doi.org/10.2165/00019053-200826080-00004 Lerner, J.S., Li, Ye., Valdesolo, P., Kassam, K.S.: Emotion and decision making. Ann. Rev. Psychol. 66(1), 799–823 (2015). https://doi.org/10.1146/annurev-psych-010213-115043 Lokkerbol, J., van Voorthuijsen, J.M., Geomini, A., Tiemens, B., van Straten, A., Smit, F., Risseeuw, A., van Balkom, A., Hiligsmann, M.: A discrete-choice experiment to assess treatment modality preferences of patients with anxiety disorder. J. Med. Econ. 22(2), 169–177 (2019). https://doi.org/10.1080/13696998.2018.1555403 Lyu, W., Wehby, G.L.: Shelter-in-place orders reduced COVID-19 Mortality and reduced the rate of growth in hospitalizations. Health Aff. (millwood) 39(9), 1615–1623 (2020). https://doi.org/10.1377/hlthaff.2020.00719 Magnani, R., Sabin, K., Saidel, T., Heckathorn, D.: Review of sampling hard-to-reach and hidden populations for HIV surveillance. AIDS 19, S67–S72 (2005). https://doi.org/10.1097/01.aids.0000172879.20628.e1 Mangham, L.J., Hanson, K., McPake, B.: How to do (or not to do) … Designing a discrete choice experiment for application in a low-income country. Health Pol. Plan. 24(2), 151–158 (2008). https://doi.org/10.1093/heapol/czn047 Medline, A., Hayes, L., Valdez, K., Hayashi, A., Vahedi, F., Capell, W., Sonnenberg, J., Glick, Z., Klausner, J.D.: Evaluating the impact of stay-at-home orders on the time to reach the peak burden of Covid-19 cases and deaths: Does timing matter? BMC Pub. Health 20(1), 1750 (2020). https://doi.org/10.1186/s12889-020-09817-9 Pei, S., Kandula, S., Shaman, J.: Differential effects of intervention timing on COVID-19 spread in the United States. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.abd6370 Ryan, M., Bate, A., Eastmond, C.J., Ludbrook, A.: Use of discrete choice experiments to elicit preferences. Qual. Health Care QHC (2001). https://doi.org/10.1136/qhc.0100055 Ryan, M., Netten, A., Skåtun, D., Smith, P.: Using discrete choice experiments to estimate a preference-based measure of outcome—an application to social care for older people. J. Health Econ. 25(5), 927–944 (2006). https://doi.org/10.1016/j.jhealeco.2006.01.001 Salganik, M.J., Heckathorn, D.D.: Sampling and estimation in hidden populations using respondent-driven sampling. Sociol. Methodol. 34(1), 193–240 (2004). https://doi.org/10.1111/j.0081-1750.2004.00152.x Sharma, M., Ong, J.J., Celum, C., Terris-Prestholt, F.: Heterogeneity in individual preferences for HIV testing: a systematic literature review of discrete choice experiments. Eclin. Med. 29–30, 100653 (2020). https://doi.org/10.1016/j.eclinm.2020.100653 Teslya, A., Pham, T.M., Godijk, N.G., Kretzschmar, M.E., Bootsma, M.C.J., Rozhnova, G.: Impact of self-imposed prevention measures and short-term government-imposed social distancing on mitigating and delaying a COVID-19 epidemic: a modelling study. PLoS Med. 17(7), e1003166–e1003166 (2020). https://doi.org/10.1371/journal.pmed.1003166 The Economist: Covid-19 is now in 50 countries, and things will get worse. accessed January 19 (2020). https://www.economist.com/briefing/2020/02/29/covid-19-is-now-in-50-countries-and-things-will-get-worse The EuroQol Group: EuroQol - a new facility for the measurement of health-related quality of life. Health Pol. 16(3), 199–208 (1990). https://doi.org/10.1016/0168-8510(90)90421-9 Train, K.E.: Discrete choice methods with simulation: Cambridge university press (2009) University of Essex Institute for Social and Economic Research. 2020. Understanding Society: COVID-19 Study, 2020. [data collection] Vallejo-Torres, L., Melnychuk, M., Vindrola-Padros, C., Aitchison, M., Clarke, C.S., Fulop, N.J., Hines, J., Levermore, C., Maddineni, S.B., Perry, C., Pritchard-Jones, K., Ramsay, A.I.G., Shackley, D.C., Morris, S.: Discrete-choice experiment to analyse preferences for centralizing specialist cancer surgery services. BJS (br. J. Surg.) 105(5), 587–596 (2018). https://doi.org/10.1002/bjs.10761 VanderWeele, T.J., Mathur, M.B.: Some desirable properties of the bonferroni correction: Is the bonferroni correction really so bad? Am. J. Epidemiol. 188(3), 617–618 (2018). https://doi.org/10.1093/aje/kwy250 Walker, P., Whittaker, C., Watson, O., Baguelin, M., Ainslie, K., Bhatia, S., Bhatt, S., Boonyasiri, A., Boyd, O., Cattarino, L., Cucunuba Perez, Z., Cuomo-Dannenburg, G., Dighe, A., Donnelly, C., Dorigatti, I., Van Elsland, S., Fitzjohn, R., Flaxman, S., Fu, H., Gaythorpe, K., Geidelberg, L., Grassly, N., Green, W., Hamlet, A., Hauck, K., Haw, D., Hayes, S., Hinsley, W., Imai, N., Jorgensen, D., Knock, E., Laydon, D., Mishra, S., Nedjati Gilani, G., Okell, L., Riley, S., Thompson, H., Unwin, H., Verity, R., Vollmer, M., Walters, C., Wang, H., Wang, Y., Winskill, P., Xi, X., Fergusonn, N. and Ghani, A.: Report 12: The global impact of COVID-19 and strategies for mitigation and suppression (2020a) Walker, P.G.T., Whittaker, C., Watson, O.J., Baguelin, M., Winskill, P., Hamlet, A., Djafaara, B.A., Cucunubá, Z., Mesa, D.O., Green, W., Thompson, H., Nayagam, S., Ainslie, K.E.C., Bhatia, S., Bhatt, S., Boonyasiri, A., Boyd, O., Brazeau, N.F., Cattarino, L., Cuomo-Dannenburg, G., Dighe, A., Donnelly, C.A., Dorigatti, I., van Elsland, S.L., FitzJohn, R., Han, Fu., Gaythorpe, K.A.M., Geidelberg, L., Grassly, N., Haw, D., Hayes, S., Hinsley, W., Imai, N., Jorgensen, D., Knock, E., Laydon, D., Mishra, S., Nedjati-Gilani, G., Okell, L.C., Juliette Unwin, H., Verity, R., Vollmer, M., Walters, C.E., Wang, H., Wang, Y., Xi, X., Lalloo, D.G., Ferguson, N.M., Ghani, A.C.: The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries. Science 369(6502), 413 (2020b). https://doi.org/10.1126/science.abc0035 Wang, J., Carlson, R.G., Falck, R.S., Siegal, H.A., Rahman, A., Li, L.: Respondent-driven sampling to recruit MDMA users: a methodological assessment. Drug Alcohol Depend. 78(2), 147–157 (2005). https://doi.org/10.1016/j.drugalcdep.2004.10.011 Wang, J., Falck, R.S., Li, L., Rahman, A., Carlson, R.G.: Respondent-driven sampling in the recruitment of illicit stimulant drug users in a rural setting: findings and technical issues. Addict. Behav. 32(5), 924–937 (2007). https://doi.org/10.1016/j.addbeh.2006.06.031 Watson, V., Becker, F., de Bekker-Grob, E.: Discrete choice experiment response rates: a meta-analysis. Health Econ. 26(6), 810–817 (2017). https://doi.org/10.1002/hec.3354 Weber, S.: A step-by-step procedure to implement discrete choice experiments in qualtrics. Soc. Sci. Comput. Rev. (2019). https://doi.org/10.1177/0894439319885317 Wejnert, C., Heckathorn, D.D.: Web-based network sampling: efficiency and efficacy of respondent-driven sampling for online research. Sociol. Methods Res. 37(1), 105–134 (2008). https://doi.org/10.1177/0049124108318333 Wilson, L., Loucks, A., Bui, C., Gipson, G., Zhong, L., Schwartzburg, A., Crabtree, E., Goodin, D., Waubant, E., McCulloch, C.: Patient centered decision making: use of conjoint analysis to determine risk–benefit trade-offs for preference sensitive treatment choices. J. Neurol. Sci. 344(1), 80–87 (2014). https://doi.org/10.1016/j.jns.2014.06.030 Young, K.P., Kolcz, D.L., O’Sullivan, D.M., Ferrand, J., Fried, J., Robinson, K.: Health care workers’ mental health and quality of life during COVID-19: results from a mid-pandemic, national survey. Psychiatr. Serv. 72(2), 122–128 (2020). https://doi.org/10.1176/appi.ps.202000424 Zhang, Y., Ma, Z.F.: Impact of the COVID-19 pandemic on mental health and quality of life among local residents in Liaoning Province, China: a cross-sectional study. Int. J. Environ. Res. Pub. Health (2020). https://doi.org/10.3390/ijerph17072381 Zimmer C., Corum J., Wee S.-L.: Coronavirus vaccine tracker (2020). https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html. Accessed 19 Jan