Kết hợp chuyển động trong mô hình động lực học quần thể cá mập và cá đuối: các phương pháp và hệ quả quản lý

Reviews in Fish Biology and Fisheries - Tập 26 - Trang 13-24 - 2015
Matias Braccini1, Alexandre Aires-da-Silva2, Ian Taylor3
1Western Australian Fisheries and Marine Research Laboratories, North Beach, Australia
2Inter-American Tropical Tuna Commission, La Jolla, USA
3Fishery Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, USA

Tóm tắt

Việc kết hợp rõ ràng chuyển động trong mô hình động lực học quần thể có thể cải thiện việc quản lý các loài di chuyển nhiều. Các chuyển động quy mô lớn ngày càng được báo cáo đối với cá mập và cá đuối. Do đó, trong bài tổng quan này, chúng tôi tóm tắt hiểu biết hiện tại về các mẫu chuyển động dài hạn của cá mập và cá đuối, sau đó trình bày các phương pháp khác nhau được sử dụng trong khoa học thủy sản để mô hình hóa chuyển động quần thể với nhấn mạnh vào cá mập và cá đuối. Việc sử dụng dữ liệu chuyển động để thông tin cho mô hình quần thể và đưa ra lời khuyên quản lý vẫn còn hiếm gặp đối với cá mập và cá đuối. Trong số ít trường hợp mà chuyển động quần thể được mô hình hóa một cách rõ ràng, thông tin về chuyển động hoàn toàn được lấy từ việc đánh dấu thông thường. Mặc dù chuyển động của cá mập và cá đuối đã được nghiên cứu ngày càng nhiều thông qua một loạt các cách tiếp cận, nhưng những nguồn thông tin khác nhau này vẫn chưa được sử dụng trong các mô hình quần thể. Việc tích hợp nhiều nguồn thông tin chuyển động này có thể thúc đẩy hiểu biết của chúng ta về động lực học của cá mập và cá đuối. Điều này, theo đó, sẽ cho phép sử dụng các mô hình thích hợp hơn để đánh giá nguồn lợi và đưa ra lời khuyên cho các nỗ lực quản lý và bảo tồn.

Từ khóa

#cá mập #cá đuối #động lực học quần thể #mô hình hóa chuyển động #quản lý tài nguyên thủy sản

Tài liệu tham khảo

Aires-da-Silva AM, Maunder MN, Gallucci VF, Kohler NE, Hoey JJ (2009) A spatially structured tagging model to estimate movement and fishing mortality rates for the blue shark (Prionace glauca) in the North Atlantic Ocean. Mar Freshw Res 60:1029–1043 Alerstam T, Hedenström A, Åkesson S, Hedenstrom A, Akesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260 Arregui I, Arrizabalaga H, la Serna JD (2006) Preliminary approach to the experimental design of tagging campaigns for movement rates estimation of East Atlantic bluefin tuna. ICCAT Collect Vol Sci Pap 59:769–788 Bansemer CS, Bennett MB (2008) Multi-year validation of photographic identification of grey nurse sharks, Carcharias taurus, and applications for non-invasive conservation research. Mar Freshw Res 59:322–331 Bansemer CS, Bennett MB (2011) Sex- and maturity-based differences in movement and migration patterns of grey nurse shark, Carcharias taurus, along the eastern coast of Australia. Mar Freshw Res 62:596–606 Barnett A, Abrantes KG, Stevens J, Semmens JM (2011) Site fidelity and sex-specific migration in a mobile apex predator: implications for conservation and ecosystem dynamics. Anim Behav 81:1039–1048 Bessudo S, Soler G, Klimley A, Ketchum J, Hearn A, Arauz R (2011) Residency of the scalloped hammerhead shark (Sphyrna lewini) at Malpelo Island and evidence of migration to other islands in the Eastern Tropical Pacific. Environ Biol Fishes 91:165–176 Beverton R, Holt S (1957) On the dynamics of exploited fish populations. Fishery Investment Ministry of Agriculture, Fisheries and Food (series 2), vol. 19. Chapman and Hall, London, 533 pp Block B et al (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475:86–90 Bonfil R et al (2005) Transoceanic migration, spatial dynamics, and population linkages of white sharks. Science 310:100–103 Boustany AM, Davis SF, Pyle P, Anderson SD, Le Boeuf BJ, Block BA (2002) Expanded niche for white sharks. Nature 415:35–36 Bres M (1993) The behaviour of sharks. Rev Fish Biol Fish 3:133–159 Bruce B, Stevens J, Malcolm H (2006) Movements and swimming behaviour of white sharks (Carcharodon carcharias) in Australian waters. Mar Biol 150:161–172 Carruthers TR, Mcallister MK, Taylor NG (2011) Spatial surplus production modeling of Atlantic tunas and billfish. Ecol Appl 21:2734–2755 Collins AB, Heupel MR, Motta PJ (2007) Residence and movement patterns of cownose rays Rhinoptera bonasus within a south-west Florida estuary. J Fish Biol 71:1159–1178 Compagno L (1990) Alternative life-history styles of cartilaginous fishes in time and space. Environ Biol Fishes 28:33–75 Couturier LIE, Jaine FRA, Townsend KA, Weeks SJ, Richardson AJ, Bennett MB (2011) Distribution, site affinity and regional movements of the manta ray, Manta alfredi (Krefft, 1868), along the east coast of Australia. Mar Freshw Res 62:628–637 Couturier LIE et al (2012) Biology, ecology and conservation of the Mobulidae. J Fish Biol 80:1075–1119 Croll AD, Newton KM, Weng K, Galván-Magaña F, O’Sullivan J, Dewar H (2012) Movement and habitat use by the spine-tail devil ray in the Eastern Pacific Ocean. Mar Ecol Prog Ser 465:193–200 Eckert S, Stewart B (2001) Telemetry and satellite tracking of whale sharks, Rhincodon typus, in the Sea of Cortez, Mexico, and the north Pacific Ocean. Environ Biol Fishes 60:299–308 Everson JP, Basson M, Hobday AJ (2012) Using electronic tag data to improve mortality and movement estimates in a tag-based spatial fisheries assessment model. Can J Fish Aquat Sci 69:869–883 Fournier DA, Hampton J, Sibert JR (1998) MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Can J Fish Aquat Sci 55:2105–2116 Fowler SL, Valenti S (2007) Review of migratory chondrichthyan fishes. CMS technical series no. 15. IUCN–The World Conservation Union, the United Nations Environment Programme and the Secretariat of the Convention on the Conservation of Migratory Species of Wild Animals. Information Press, Oxford, p 68 Freund E, Dewar H, Croll D (2000) Locomotor tracking of the spine-tailed devil ray, Mobula japanica. Am Zool 40:1020 Frisk MG, Martell SJD, Miller TJ, Sosebee K (2010) Exploring the population dynamics of winter skate (Leucoraja ocellata) in the Georges Bank region using a statistical catch-at-age model incorporating length, migration, and recruitment process errors. Can J Fish Aquat Sci 67:774–792 Goethel DR, Quinn TJ II, Cadrin SX (2011) Incorporating spatial structure in stock assessment: movement modeling in marine fish population dynamics. Rev Fish Sci 19:119–136 Goethel DR, Legault CM, Cadrin SX (2015) Demonstration of a spatially explicit, tag-integrated stock assessment model with application to three interconnected stocks of yellowtail flounder off of New England. ICES J Mar Sci 72:164–177 Gore MA, Rowat D, Hall J, Gell FR, Ormond RF (2008) Transatlantic migration and deep mid-ocean diving by basking shark. Biol Lett 4:395–398 Graham RT, Witt MJ, Castellanos DW, Remolina F, Maxwell S, Godley BJ, Hawkes LA (2012) Satellite tracking of manta rays highlights challenges to their conservation. PLoS One 7:e36834 Guan W, Cao J, Chen Y, Cieri M (2013) Impacts of population and fishery spatial structures on fishery stock assessment. Can J Fish Aquat Sci 1189:1178–1189 Hammerschlag N, Gallagher AJ, Lazarre DM (2011a) A review of shark satellite tagging studies. J Exp Mar Biol Ecol 398:1–8 Hammerschlag N, Gallagher A, Lazarre D, Slonim C (2011b) Range extension of the endangered great hammerhead shark Sphyrna mokarran in the Northwest Atlantic: preliminary data and significance for conservation. Endanger Species Res 13:111–116 Heithaus M, Wirsing A, Dill L, Heithaus L (2007) Long-term movements of tiger sharks satellite-tagged in Shark Bay, Western Australia. Mar Biol 151:1455–1461 Heupel MR, Semmens JM, Hobday AJ (2006) Automated acoustic tracking of aquatic animals: scales, design and deployment of listening station arrays. Mar Freshw Res 57:1–13 Hilborn R (1990) Determination of fish movement patterns from tag recoveries using maximum likelihood estimators. Can J Fish Aquat Sci 47:635–643 Hilborn R, Walters CJ (1992) Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman and Hall, New York Hueter RE, Manire CA (1994) Bycatch and catch-release mortaly of small sharks in the Gulf Coast nursery grounds of Tampa Bay and Charlotte Harbour. Mote Marine technical report no. 368, p 183 Humphries NE et al (2010) Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465:1066–1069 Hussey NE, McCarthy ID, Dudley SFJ, Mann BQ (2009) Nursery grounds, movement patterns and growth rates of dusky sharks, Carcharhinus obscurus: a long-term tag and release study in South African waters. Mar Freshw Res 60:571–583 Jonsen I, Myers R, Flemming J (2003) Meta-analysis of animal movement using state-space models. Ecology 59:3055–3063 Kauffman D (1955) Noteworthy recoveries of tagged dogfish. Wash Dep Fish Fish Res Pap 1:39–40 Klimley PA (2013) The biology of sharks and rays. University of Chicago Press, Chicago, 512 pages Kleiber P, Clarke S, Bigelow K, Nakano H, Mcallister M, Takeuchi Y (2009) North Pacific blue shark stock assessment. NOAA technical memorandum 17, p 82 Kohler NE, Turner PA (2001) Shark tagging: a review of conventional methods and studies. Environ Biol Fishes 60:191–224 Kohler NE, Casey JG, Turner PA (1998) NMFS cooperative shark tagging program, 1962–93: an atlas of shark tag and recapture data. Mar Fish Rev 60:1–87 Kohler NE, Turner PA, Hoey JJ, Natanson LJ, Briggs R (2002) Tag and recapture data for three pelagic shark species: blue shark (Prionace glauca), shortfin mako (Isurus oxyrinchus), and porbeagle (Lamna naus) in the North Atlantic Ocean. ICCAT Collect Vol Sci Pap 54:1231–1260 Kritzer JP, Sale PF (2004) Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish Fish 5:131–140 Kurota H, McAllister MK, Lawson GL, Nogueira JI, Teo SLH, Block BA (2009) A sequential Bayesian methodology to estimate movement and exploitation rates using electronic and conventional tag data: application to Atlantic bluefin tuna (Thunnus thynnus). Can J Fish Aquat Sci 66:321–342 Last PR, Stevens JD (2009) Sharks and rays of Australia, 2nd edn. CSIRO Publishing, Collingwood Lea JSE, Wetherbee BM, Queiroz N, Burnie N, Aming C, Sousa LL, Mucientes GR, Humphries NE, Harvey GM, Sims DW, Shivji MS (2015) Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems. Sci Rep 5:11202 Lorenzen K, Steneck RS, Warner RS, Parma AM, Coleman FC, Leber KM (2010) The spatial dimensions of fisheries: putting it all in place. Bull Mar Sci 86:169–177 Maunder MN (1998) Integration of tagging and population dynamics models in fisheries stock assessment. Ph.D. thesis, The University of Washington Maunder M (2003) Paradigm shifts in fisheries stock assessment: from integrated analysis to Bayesian analysis and back again. Nat Res Model 16:465–475 Maunder M (2007) Workshop on using tagging data for fisheries stock assessment and management. Inter-American Tropical Tuna Commission, La Jolla, California, 16–19 October 2007 Maunder M (2008) Workshop on spatial analysis for stock assessment. Inter-American Tropical Tuna Commission, La Jolla, California, 14–17 October 2007 Maunder MN, Punt AE (2013) A review of integrated analysis in fisheries stock assessment. Fish Res 142:61–74 McGarvey R, Feenstra J (2002) Estimating rates of fish movement from tag recoveries: conditioning by recapture. Can J Fish Aquat Sci 59:1054–1064 McLaughlin RH, O’Gower AK (1971) Life history and underwater studies of a heterodont shark. Ecol Monogr 41:271–289 Michielsens CG, McAllister MK, Kuikka S, Pakarinen T, Karlsson L, Romakkaniemi A, Perä I, Mäntyniemi S (2006) A Bayesian state–space mark–recapture model to estimate exploitation rates in mixed-stock fisheries. Can J Fish Aquat Sci 63:321–334 Morgan A (2008) Effects of temporal closures and gear modifications on the population of dusky sharks in the Northwestern Atlantic Ocean. Ph.D. thesis, The University of Florida Pade NG, Queiroz N, Humphries NE, Witt MJ, Jones CS, Noble LR, Sims DW (2009) First results from satellite-linked archival tagging of porbeagle shark, Lamna nasus: area fidelity, wider-scale movements and plasticity in diel depth changes. J Exp Mar Biol Ecol 370:64–74 Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) Statespace models of individual animal movement. Trends Ecol Evol 23:87–94 Pribac F, Punt AE, Taylor BL, Walker TI (2005) Using length, age and tagging data in a stock assessment of a length selective fishery for gummy shark (Mustelus antarcticus). J Northwest Atl Fish Sci 35:267–290 Punt AE, Pribac F, Walker TI, Taylor BL, Prince JD (2000) Stock assessment of school shark, Galeorhinus galeus, based on a spatially explicit population dynamics model. Mar Freshw Res 51:205–220 Quinn TI, Deriso R (1999) Quantitative fish dynamics. Oxford University Press, New York Schlaff AM, Heupel MR, Simpfendorfer CA (2014) Influence of environmental factors on shark and ray movement, behaviour and habitat use: a review. Rev Fish Biol Fish 24:1089–1103 Sequeira A, Mellin C, Rowat D, Meekan M, Bradshaw CJA (2012) Ocean-scale prediction of whale shark distribution. Divers Distrib 18:504–518 Sibert JR, Hampton J, Fournier DA, Bills PJ (1999) An advection-diffusion-reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (Katsuwonus pelamis). Can J Fish Aquat Sci 56:925–938 Sims DW (2010) Swimming behaviour and energetics of free-ranging sharks: new directions in movement analysis. In: Domenici P, Kapoor BG (eds) Fish locomotion: an eco-ethological perspective. Science Publishers, Enfield Sippel T et al (2015) Using movement data from electronic tags in fisheries stock assessment: a review of models, technology and experimental design. Fish Res 163:152–160 Skellam J (1951) Random dispersal in theoretical populations. Biometrika 38:196–218 Speed CW, Field IC, Meekan MG, Bradshaw CJA (2010) Complexities of coastal shark movements and their implications for management. Mar Ecol Prog Ser 408:275–293 Stevens J (2010) Epipelagic oceanic elasmobranchs. In: Carrier J, Musick J, Heithaus MR (eds) Sharks and their relatives II: biodiversity, adaptive physiology, and conservation. CRC Press, Boca Raton, pp 3–35 Stevens JD, West GJ, McLoughlin KJ (2000) Movements, recapture patterns, and factors affecting the return rate of carcharhinid and other sharks tagged off northern Australia. Mar Freshw Res 51:127–141 Taylor IG (2008) Modeling spiny dogfish population dynamics in the Northeast Pacific. Ph.D. thesis. University of Washington Templeman W (1984) Migrations of thorny skate, Raja radiata, tagged in the Newfoundland Area. J Northwest Atl Fish Sci 5:55–63 Thorson TB (1971) Movement of bull sharks, Carcharhinus leucas, between Caribbean Sea and Lake Nicaragua. Copeia 1971:336–338 Tuck G, Possingham H (1994) Optimal harvesting strategies for a metapopulation. Bull Math Biol 56:107–127 Walker TI (2010) Population biology and dynamics of the gummy shark (Mustelus antarcticus) harvested off southern Australia. Ph.D. thesis, The University of Melbourne Walker TI, Taylor BL, Brown LP, Punt AE (2008) Embracing movement and stock structure for assessment of Galeorhinus galeus harvested off southern Australia. In: Camhi M, Pikitch E (eds) Sharks of the open ocean. Blackwell Scientific Publishing, New York Walters CJ, Martell S (2004) Fisheries ecology and management. Princeton University Press, Princeton Weng KC et al (2005) Satellite tagging and cardiac physiology reveal niche expansion in salmon sharks. Science 310:104–106 Xiao Y (1996) A framework for evaluating experimental designs for estimating rates of fish movement from tag recoveries. Can J Fish Aquat Sci 53:1272–1280