Inclusion of paraoxon, parathion, and methyl parathion into α-cyclodextrin: a GFN2-xTB multi-equilibrium quantum study
Tóm tắt
A new theoretical approach was recently addressed to predict cyclodextrin host–guest binding constants with the GFN2-xTB semiempirical quantum method. Within such a strategy, a set of starting supramolecular arrangements is automatically obtained through the UD-APARM software, and many optimized host–guest systems are used to obtain each binding constant. In the present work, within the scope of the multi-equilibrium treatment, we carried out a theoretical study concerning the host–guest systems formed with paraoxon (PRX), methyl-parathion (MPTN), and parathion (PTN) into α-cyclodextrin (α-CD), for which experimental data were addressed. Those guests correspond to pesticides in use, and their inclusion plays a role in remediation technology. The procedure for estimating binding constants for the host–guest system is discussed in terms of the ranges for the supramolecular parameters employed in exploring the GFN2-xTB Potential Energy Surface (PES). As a result, by investigating an unprecedented number of starting systems (3,076), we identified that proper exploration of the GFN2-xTB PES gives a reliable prediction of the binding constant in solution. Furthermore, with the study of different starting associations, for PTN/α-CD, we found an excellent linear correlation (R2 = 0.987) between GFN2-xTB data and experimental information, which, as in our previous study, supports the discussed methodology for application in predicting binding constants for CD-based host–guest systems.
Tài liệu tham khảo
Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98(5), 1743–1753 (1998). https://doi.org/10.1021/cr970022c
Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98(5), 1875–1917 (1998). https://doi.org/10.1021/cr970015o
Jansook, P., Ogawa, N., Loftsson, T.: Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 535(1–2), 272–284 (2018). https://doi.org/10.1016/j.ijpharm.2017.11.018
Dhiman, P., Bhatia, M.: Pharmaceutical applications of cyclodextrins and their derivatives. J. Incl. Phenom. Macrocycl. Chem. 98(3–4), 171–186 (2020). https://doi.org/10.1007/s10847-020-01029-3
Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39(9), 1033–1046 (2004). https://doi.org/10.1016/S0032-9592(03)00258-9
Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114(21), 10940–10975 (2014). https://doi.org/10.1021/cr500081p
Kim, D.H., Lee, S.E., Pyo, Y.C., Tran, P., Park, J.S.: Solubility enhancement and application of cyclodextrins in local drug delivery. J. Pharm. Investig. 50(1), 17–27 (2020). https://doi.org/10.1007/s40005-019-00434-2
Landy, D., Mallard, I., Ponchel, A., Monflier, E., Fourmentin, S.: Remediation technologies using cyclodextrins: an overview. Environ. Chem. Lett. 10(3), 225–237 (2012). https://doi.org/10.1007/s10311-011-0351-1
Wang, J., Chen, B.: Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem. Eng. J. 281, 379–388 (2015). https://doi.org/10.1016/j.cej.2015.06.102
Yadav, M., Thakore, S., Jadeja, R.: A review on remediation technologies using functionalized cyclodextrin. Environ. Sci. Pollut. Res. 29(1), 236–250 (2022). https://doi.org/10.1007/s11356-021-15887-y
Sikder, M.T., Rahman, M.M., Jakariya, M., Hosokawa, T., Kurasaki, M., Saito, T.: Remediation of water pollution with native cyclodextrins and modified cyclodextrins: a comparative overview and perspectives. Chem. Eng. J. 355, 920–941 (2019). https://doi.org/10.1016/j.cej.2018.08.218
Waris, K.H., Lee, V.S., Mohamad, S.: Pesticide remediation with cyclodextrins: a review. Environ. Sci. Pollut. Res. 28(35), 47785–47799 (2021). https://doi.org/10.1007/s11356-021-15434-9
Flaherty, R.J., Nshime, B., DeLaMarre, M., DeJong, S., Scott, P., Lantz, A.W.: Cyclodextrins as complexation and extraction agents for pesticides from contaminated soil. Chemosphere 91(7), 912–920 (2013). https://doi.org/10.1016/j.chemosphere.2013.02.005
Sambrook, M.R., Vincent, J.C., Ede, J.A., Gass, A., Cragg, P.J.: Experimental and computational study of the inclusion complexes of β-cyclodextrin with the chemical warfare agent soman (GD) and commonly used simulants. RSC Adv. 7, 38069–38076 (2017). https://doi.org/10.1039/c7ra03328a
Lorke, D.E., Nurulain, S.M., Hasan, M.Y., Kuča, K., Petroianu, G.A.: Combined pre- and posttreatment of paraoxon exposure. Molecules (2020). https://doi.org/10.3390/molecules25071521
Rani, M., Shanker, U.: Degradation of traditional and new emerging pesticides in water by nanomaterials: recent trends and future recommendations. Int. J. Environ. Sci. Technol. 15(6), 1347–1380 (2018). https://doi.org/10.1007/s13762-017-1512-y
Sharma, A., et al.: Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1(11), 1–16 (2019). https://doi.org/10.1007/s42452-019-1485-1
Garcia, S.J., Abu-Qare, A.W., Meeker-O’Connell, W.A., Borton, A.J., Abou-Donia, M.B.: Methyl parathion: a review of health effects. J. Toxicol. Environ. Heal. —Part B Crit. Rev. 6(2), 185–210 (2003). https://doi.org/10.1080/10937400306471
Anconi, C.P.A., Souza, L.C.A.: Multi-equilibrium approach to study cyclodextrins host–guest systems with GFN2-xTB quantum method: a case study of phosphorothioates included in β-cyclodextrin. Comput. Theor. Chem. 1217, 113916 (2022)
Fernandes, C.M., Carvalho, R.A., Pereira da Costa, S., Veiga, F.J.B.: Multimodal molecular encapsulation of nicardipine hydrochloride by β-cyclodextrin, hydroxypropyl-β-cyclodextrin and triacetyl-β-cyclodextrin in solution. Structural studies by 1H NMR and ROESY experiments. Eur. J. Pharm. Sci. 18(5), 285–296 (2003). https://doi.org/10.1016/S0928-0987(03)00025-3
Mura, P.: Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J. Pharm. Biomed. Anal. 101, 238–250 (2014). https://doi.org/10.1016/j.jpba.2014.02.022
Saha, S., Roy, A., Roy, M.N.: Mechanistic investigation of inclusion complexes of a sulfa drug with α- and β-cyclodextrins. Ind. Eng. Chem. Res. 56(41), 11672–11683 (2017). https://doi.org/10.1021/acs.iecr.7b02619
Saha, S., Roy, A., Roy, K., Roy, M.N.: Study to explore the mechanism to form inclusion complexes of β-cyclodextrin with vitamin molecules. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep35764
Samuelsen, L., Holm, R., Schönbeck, C.: Cyclodextrin binding constants as a function of pH for compounds with multiple pKa values. Int. J. Pharm. 585, 119493 (2020). https://doi.org/10.1016/j.ijpharm.2020.119493
Tafazzoli, M., Ghiasi, M.: Structure and conformation of α-, β-and γ-cyclodextrin in solution: theoretical approaches and experimental validation. Carbohydr. Polym. 78(1), 10–15 (2009)
Usacheva, T.R., et al.: Complexation of cyclodextrins with benzoic acid in water-organic solvents: a solvation-thermodynamic approach. Molecules (2021). https://doi.org/10.3390/molecules26154408
Sadrerafi, K., Moore, E.E., Lee, M.W.: Association constant of β-cyclodextrin with carboranes, adamantane, and their derivatives using displacement binding technique. J. Incl. Phenom. Macrocycl. Chem. 83(1–2), 159–166 (2015). https://doi.org/10.1007/s10847-015-0552-5
Bouchemal, K., Mazzaferro, S.: How to conduct and interpret ITC experiments accurately for cyclodextrin–guest interactions. Drug Discov. Today 17(11–12), 623–629 (2012)
Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98(5), 1829–1873 (1998). https://doi.org/10.1021/cr9700179
Castro, E.A., Barbiric, D.A.J.: Current theoretical methods applied to study cyclodextrins and their complexes. An. des la Asoc. Quim. Argent. 90(4–6), 1–44 (2002). https://doi.org/10.1002/chin.200551276
Nagaraju, M., Sastry, G.N.: Theoretical studies on inclusion complexes of cyclodextrins. J. Phys. Chem. A 113(34), 9533–9542 (2009)
Anconi, C.P.A., Nascimento, C.S., Fedoce-Lopes, J., Dos Santos, H.F., De Almeida, W.B.: Ab initio calculations on low-energy conformers of α-cyclodextrin. J. Phys. Chem. A 111(48), 12127–12135 (2007). https://doi.org/10.1021/jp0762424
Ding, B., Yu, Y., Geng, S., Liu, B., Hao, Y., Liang, G.: Computational methods for the interaction between cyclodextrins and natural compounds: technology, benefits, limitations, and trends. J. Agric. Food Chem. 70(8), 2466–2482 (2022). https://doi.org/10.1021/acs.jafc.1c07018
Dinar, K.: Theoretical and experimental study on inclusion complexation between guests and cyclodextrins: a critical review. J. Maroc. Chim. Hétérocyclique 19(4), 77–84 (2020). https://doi.org/10.48369/IMIST.PRSM/jmch-v19i4.24288
Dodziuk, H.: Rigidity versus flexibility. A review of experimental and theoretical studies pertaining to the cyclodextrin nonrigidity. J. Mol. Struct. 614(1–3), 33–45 (2002)
Anconi, C.P.A.: Relative position and relative rotation in supramolecular systems through the analysis of the principal axes of inertia: ferrocene/cucurbit[7]uril and Ferrocenyl azide/β-cyclodextrin case studies. ACS Omega 5(10), 5013–5025 (2020). https://doi.org/10.1021/acsomega.9b03914
Anconi, C.P.A., Nascimento, C.S., De Almeida, W.B., Dos Santos, H.F.: The role played by head-tail configuration on the molecular weight distribution of α-cyclodextrin tubes. J. Incl. Phenom. Macrocycl. Chem. 60(1–2), 25–33 (2008). https://doi.org/10.1007/s10847-007-9348-6
Faucci, M.T., Melani, F., Mura, P.: 1H-NMR and molecular modelling techniques for the investigation of the inclusion complex of econazole with α-cyclodextrin in the presence of malic acid. J. Pharm. Biomed. Anal. 23(1), 25–31 (2000). https://doi.org/10.1016/S0731-7085(00)00260-0
Dahlheim, C.E., Dali, M.M., Naringrekar, V.H., Miller, S.A., Shukla, R.B.: Multidisciplinary investigation of atypical inclusion complexes of β-cyclodextrin and a phospholipase-A2 inhibitor. J. Pharm. Sci. 94(2), 409–422 (2005). https://doi.org/10.1002/jps.20245
Floare, C.G., Pirnau, A., Bogdan, M.: 1H NMR spectroscopic characterization of inclusion complexes of tolfenamic and flufenamic acids with β-cyclodextrin. J. Mol. Struct. 1044, 72–78 (2013). https://doi.org/10.1016/j.molstruc.2012.11.021
Jug, M., Mennini, N., Kövér, K.E., Mura, P.: Comparative analysis of binary and ternary cyclodextrin complexes with econazole nitrate in solution and in solid state. J. Pharm. Biomed. Anal. 91, 81–91 (2014). https://doi.org/10.1016/j.jpba.2013.12.029
Casadesús, R., et al.: Testing electronic structure methods for describing intermolecular H ⋯ H interactions in supramolecular chemistry. J. Comput. Chem. 25(1), 99–105 (2004). https://doi.org/10.1002/jcc.10371
Grimme, S., Bannwarth, C., Shushkov, P.: A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 13(5), 1989–2009 (2017). https://doi.org/10.1021/acs.jctc.7b00118
Bannwarth, C., et al.: Extended tight-binding quantum chemistry methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 11(2), 1–49 (2021). https://doi.org/10.1002/wcms.1493
Ferrero, R., et al.: On the interactions of melatonin/β-cyclodextrin inclusion complex: a novel approach combining efficient semiempirical extended tight-binding (xTB) results with ab initio methods. Molecules 26(19), 5881 (2021). https://doi.org/10.3390/molecules26195881
Kamiya, M., Mitsuhashi, S., Makino, M.: Catalytic properties of cyclodextrins on the hydrolysis of parathion and paraoxon in aquatic medium containing humic acids. Chemosphere 25(12), 1783–1796 (1992). https://doi.org/10.1016/0045-6535(92)90019-N
Kim, S., et al.: PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 49(D1), D1388–D1395 (2021). https://doi.org/10.1093/nar/gkaa971
Pracht, P., Bohle, F., Grimme, S.: Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 22(14), 7169–7192 (2020). https://doi.org/10.1039/c9cp06869d
Puliti, R., Mattia, C.A., Paduano, L.: Crystal structure of a new α-cyclodextrin hydrate form. Molecular geometry and packing features: Disordered solvent contribution. Carbohydr. Res. 310(1–2), 1–8 (1998). https://doi.org/10.1016/S0008-6215(98)00150-5
Ehlert, S., Stahn, M., Spicher, S., Grimme, S.: Robust and efficient implicit solvation model for fast semiempirical methods. J. Chem. Theory Comput. 17(7), 4250–4261 (2021). https://doi.org/10.1021/acs.jctc.1c00471
Krepps, M.K., Parkin, S., Atwood, D.A.: Hydrogen Bonding with Sulfur 2001. Cryst. Growth Des. (2001). https://doi.org/10.1021/cg015505v
Platts, J.A., et al.: Directionality of hydrogen bonds to sulfur and oxygen. J. Am. Chem. Soc. 118, 2726–2733 (1996)
Bannwarth, C., Ehlert, S., Grimme, S.: GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15(3), 1652–1671 (2019). https://doi.org/10.1021/acs.jctc.8b01176
Dodziuk, H., Lukin, O.: Dependence of the average energy between the 1: 2 complexes of enantiomeric a -pinenes with a -cyclodextrin on the length of dynamic simulation. Chem. Phys. Lett. 327, 18–22 (2000)
Bonnet, P., Jaime, C., Morin-allory, L.: α -, β, and γ -cyclodextrin dimers. Molecular modeling studies by molecular mechanics and molecular dynamics simulations. J. Org. Chem. 66, 689–692 (2001)
I. Bea, M. Gotsev, P. Ivanov et al., Chelate Effect in Cyclodextrin Dimers: A Computational (MD, MM/PPSA, and MM/GBSA) study, 71, 5, 2056–2063 (2006)
Bea, I., Jaime, C., Kollman, P., Bea, I.: Molecular recognition by β-cyclodextrin derivatives : molecular dynamics, free-energy perturbation and molecular mechanics/poisson—boltzmann surface area goals and problems. Theor. Chem. Acc. 108, 286–292 (2002). https://doi.org/10.1007/s00214-002-0384-4
Pereira, R.A., da Silva Borges, W.M., Peraro, C.R., Anconi, C.P.A.: Theoretical inclusion of deprotonated 2,4-D and dicamba pesticides in ß-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 86(3–4), 343–349 (2016). https://doi.org/10.1007/s10847-016-0665-5
Casadesús, R., Moreno, M., González-Lafont, À., Lluch, J.M., Repasky, M.P.: Testing electronic structure methods for describing intermolecular H··· H interactions in supramolecular chemistry. J. Comput. Chem. 25(1), 99–105 (2004). https://doi.org/10.1002/jcc.10371
Anconi, C.P.A., et al.: Inclusion complexes of a -cyclodextrin and the cisplatin analogues oxaliplatin, carboplatin and nedaplatin : a theoretical approach. Chem. Phys. Lett. 515(1–3), 127–131 (2011). https://doi.org/10.1016/j.cplett.2011.09.005
Teixeira, M.G., et al.: Theoretical and Experimental study of inclusion complexes formed by isoniazid and modified β—cyclodextrins: 1 H NMR structural determination and antibacterial activity evaluation. J. Phys. Chem. B 12, 5 (2014). https://doi.org/10.1021/jp409579m
Pereira, R.A., Anconi, C.P.A., Nascimento, C.S., De Almeida, W.B., Dos Santos, H.F.: Stability and spatial arrangement of the 2,4-dichlorophenoxyaceticacid and β-cyclodextrin inclusion compound: a theoretical study. Chem. Phys. Lett. 633(1), 158–162 (2015). https://doi.org/10.1016/j.cplett.2015.05.044
Anconi, C.P.A., Santos, T.M.R., Souza, A.C.: Host—guest intermolecular hydrogen bonds and stability in aqueous media : the benzaldehyde/β-CD case study. J. Incl. Phenom. Macrocycl. Chem. 89(1), 137–142 (2017). https://doi.org/10.1007/s10847-017-0734-4