Inaccuracy of machine tools due to verification conditions

Measurement - Tập 188 - Trang 110629 - 2022
Sergio Aguado1, Pablo Pérez1, José Antonio Albajez1, Jesús Velázquez1, Jorge Santolaria1
1Design and Manufacturing Engineering Department, University of Zaragoza, María de Luna 3, 50018 Zaragoza, Spain

Tài liệu tham khảo

Schwenke, 2008, Geometric error measurement and compensation of machines-An update, CIRP Ann. - Manuf. Technol., 57, 660, 10.1016/j.cirp.2008.09.008 Okafor, 2000, Vertical machining center accuracy characterization using laser interferometer: Part 1. Linear positional errors, J. Mater. Process. Technol., 105, 394, 10.1016/S0924-0136(00)00661-0 Castro, 2006, Calibration system based on a laser interferometer for kinematic accuracy assessment on machine tools, Int. J. Mach. Tools Manuf., 46, 89, 10.1016/j.ijmachtools.2005.05.001 Kunzmann, 1990, A Uniform Concept for Calibration, Acceptance Test, and Periodic Inspection of Coordinate Measuring Machines Using Reference Objects, CIRP Ann. - Manuf. Technol., 39, 561, 10.1016/S0007-8506(07)61119-6 Carmignato, 2020, Dimensional artefacts to achieve metrological traceability in advanced manufacturing, CIRP Ann., 69, 693, 10.1016/j.cirp.2020.05.009 Weckenmann, 2005, Comparison of CMM length measurement tests conducted with different 1D, 2D and 3D standards, Conf. Metrol. Prod. Eng., 113 Belforte, 1987, Coordinate Measuring Machines and Machine Tools Selfcalibration and Error Correction, CIRP Ann., 36, 359, 10.1016/S0007-8506(07)62622-5 Linares, 2014, Impact of measurement procedure when error mapping and compensating a small CNC machine using a multilateration laser interferometer, Precis. Eng., 38, 578, 10.1016/j.precisioneng.2014.02.008 Zha, 2020, Volumetric error compensation of machine tool using laser tracer and machining verification, Int. J. Adv. Manuf. Technol., 108, 2467, 10.1007/s00170-020-05556-8 Aguado, 2016, Empirical analysis of the efficient use of geometric error identification in a machine tool by tracking measurement techniques, Meas. Sci. Technol., 27, 035002, 10.1088/0957-0233/27/3/035002 Wan, 2018, Calibration and compensation of machine tool volumetric error using a laser tracker, Int. J. Mach. Tools Manuf., 124, 126, 10.1016/j.ijmachtools.2017.10.004 Wang, 2019, The identification method of the relative position relationship between the rotary and linear axis of multi-axis numerical control machine tool by laser tracker, Meas. J. Int. Meas. Confed., 132, 369, 10.1016/j.measurement.2018.09.062 Aguilar, 2020, Development of a high precision telescopic instrument based on simultaneous laser multilateration for machine tool volumetric verification, Sensors (Switzerland), 20, 1, 10.3390/s20133798 Aguado, 2020, Configuration Optimisation of Laser Tracker Location on Verification Process, Materials, 13, 331, 10.3390/ma13020331 H. Wang, Z. Shao, Z. Fan, Z. Han, Optimization of laser trackers locations for position measurement, in: 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), May 2018, pp. 1–6. http://dx.doi.10.1109/I2MTC.2018.8409835. Yao, 2021, Position error reduction of tool center point in multi-tasking machine tools through compensating influence of geometric deviations identified by ball bar measurements, Precis. Eng., 72, 745, 10.1016/j.precisioneng.2021.08.003 Jiang, 2019, Geometric accuracy evaluation during coordinated motion of rotary axes of a five-axis machine tool, Meas. J. Int. Meas. Confed., 146, 403, 10.1016/j.measurement.2019.03.060 Wang, 2021, A reconfigurable mechanism model for error identification in the double ball bar tests of machine tools, Int. J. Mach. Tools Manuf., 165, 103737, 10.1016/j.ijmachtools.2021.103737 Gao, 2020, An improved machine tool volumetric error compensation method based on linear and squareness error correction method, Int. J. Adv. Manuf. Technol., 106, 4731, 10.1007/s00170-020-04965-z Mchichi, 2019, Optimal calibration strategy for a five-axis machine tool accuracy improvement using the D-optimal approach, Int. J. Adv. Manuf. Technol., 103, 251, 10.1007/s00170-019-03454-2 Xing, 2019, Five-axis machine tools accuracy condition monitoring based on volumetric errors and vector similarity measures, Int. J. Mach. Tools Manuf., 138, 80, 10.1016/j.ijmachtools.2018.12.002 Givi, 2014, Validation of volumetric error compensation for a five-axis machine using surface mismatch producing tests and on-machine touch probing, Int. J. Mach. Tools Manuf., 87, 89, 10.1016/j.ijmachtools.2014.08.001 Huang, 2019, Identification of integrated geometric errors of rotary axis and setup position errors for 5-axis machine tools based on machining test, Int. J. Adv. Manuf. Technol., 102, 1487, 10.1007/s00170-018-03223-7 Conte, 2016, Calibration strategies of laser trackers based on network measurements, Int. J. Adv. Manuf. Technol., 83, 1161, 10.1007/s00170-015-7661-6 Hughes, 2011, Laser tracker error determination using a network measurement, Meas. Sci. Technol., 22, 045103, 10.1088/0957-0233/22/4/045103 Pérez Muñoz, 2016, Analysis of the initial thermal stabilization and air turbulences effects on Laser Tracker measurements, J. Manuf. Syst., 41, 277, 10.1016/j.jmsy.2016.10.002 Bryan, 1967 Zhang, 2017, Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature, Precis. Eng., 47, 231, 10.1016/j.precisioneng.2016.08.008 ISO- 230-3:2020 -- Part 3: Determination of thermal effects. Ma, 2018, Geometric design of the rolling tool for gear roll-forming process with axial-infeed, J. Mater. Process. Technol., 258, 67, 10.1016/j.jmatprotec.2018.03.006 Li, 2019, Explicit error modeling of dynamic thermal errors of heavy machine tool frames caused by ambient temperature fluctuations, J. Manuf. Process., 48, 320, 10.1016/j.jmapro.2019.10.018 Vyroubal, 2012, Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method, Precis. Eng., 36, 121, 10.1016/j.precisioneng.2011.07.013 Zhou, 2020, Fast heat conduction-based thermal error control technique for spindle system of machine tools, Int. J. Adv. Manuf. Technol., 107, 653, 10.1007/s00170-020-04961-3 Liu, 2020, Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools, Mechanical Systems and Signal Processing, 138, 106538, 10.1016/j.ymssp.2019.106538 Grama, 2018, A model-based cooling strategy for motorized spindle to reduce thermal errors, Int. J. Mach. Tools Manuf., 132, 3, 10.1016/j.ijmachtools.2018.04.004 Mayr, 2018, An adaptive self-learning compensation approach for thermal errors on 5-axis machine tools handling an arbitrary set of sample rates, CIRP Ann., 67, 551, 10.1016/j.cirp.2018.04.001 Mori, 2019, A new measurement method for machine tool thermal deformation on a two-dimensional trajectory using a tracking interferometer, CIRP Ann., 68, 551, 10.1016/j.cirp.2019.04.093 Narendra Reddy, 2019, Real-time Thermal Error Compensation Strategy for Precision Machine tools, Materials Today: Proceedings, Jan., 22, 2386 Zhang, 2012, Machine tool thermal error modeling and prediction by grey neural network, Int. J. Adv. Manuf. Technol., 59, 1065, 10.1007/s00170-011-3564-3 Mareš, 2020, Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece, Precis. Eng., 66, 21, 10.1016/j.precisioneng.2020.06.010 Zhang, 2017, Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature, Precis. Eng., 47, 231, 10.1016/j.precisioneng.2016.08.008 Tan, 2014, A thermal error model for large machine tools that considers environmental thermal hysteresis effects, Int. J. Mach. Tools Manuf., 82-83, 11, 10.1016/j.ijmachtools.2014.03.002 Mori, 2021, Effect of expansion coefficient difference between machine tool and workpiece to the thermal deformation induced by room temperature change, Procedia CIRP, 101, 318, 10.1016/j.procir.2021.02.034 Wiessner, 2018, Thermal test piece for 5-axis machine tools, Precis. Eng., 52, 407, 10.1016/j.precisioneng.2018.01.017 Bitar-Nehme, 2016, Thermal volumetric effects under axes cycling using an invar R-test device and reference length, Int. J. Mach. Tools Manuf., 105, 14, 10.1016/j.ijmachtools.2016.03.003 Heisel, 2006, Thermography-based investigation into thermally induced positioning errors of feed drives by example of a ball screw, CIRP Ann. - Manuf. Technol., 55, 423, 10.1016/S0007-8506(07)60450-8 Lee, 2003, ICA based thermal source extraction and thermal distortion compensation method for a machine tool, Int. J. Mach. Tools Manuf., 43, 589, 10.1016/S0890-6955(03)00017-8 Holub, 2020, Effect of position of temperature sensors on the resulting volumetric accuracy of the machine tool, Meas. J. Int. Meas. Confed., 150, 107074, 10.1016/j.measurement.2019.107074 Liu, 2018, Thermal error robust modeling method for CNC machine tools based on a split unbiased estimation algorithm, Precis. Eng., 51, 169, 10.1016/j.precisioneng.2017.08.007 Aguado, 2019, Study on Machine Tool Positioning Uncertainty Due to Volumetric Verification, Sensors, 19, 2847, 10.3390/s19132847 Lau, 1986, Automatic laser tracking interferometer system for robot metrology, Precis. Eng., 8, 3, 10.1016/0141-6359(86)90002-4 Aguado, 2016, Improving a real milling machine accuracy through an indirect measurement of its geometric errors, J. Manuf. Syst., 40, 26, 10.1016/j.jmsy.2016.05.006 Aguado, 2012, Identification strategy of error parameter in volumetric error compensation of machine tool based on laser tracker measurements, Int. J. Mach. Tools Manuf., 53, 160, 10.1016/j.ijmachtools.2011.11.004