InGaN stress compensation layers in InGaN/GaN blue LEDs with step graded electron injectors

Superlattices and Microstructures - Tập 116 - Trang 253-261 - 2018
V. Sheremet1, N. Gheshlaghi1, M. Sözen1, M. Elçi1,2, N. Sheremet1,3, A. Aydınlı1,4, I. Altuntaş5, K. Ding6, V. Avrutin6, Ü. Özgür6, H. Morkoç6
1Advanced Research Laboratories, Department of Physics, Bilkent University, Ankara, 06800, Turkey
2Institute of Applied Mathematics, Middle East Technical University, Ankara, 06800, Turkey
3Institute of Physics, NAS of Ukraine, Kyiv, 03680 Ukraine
4Department of Electrical and Electronics Engineering, Uludağ University, Bursa, 16059 Turkey
5Department of Nanotechnology Engineering, Cumhuriyet University, Sivas, 58140 Turkey
6Department of Electrical and Computer Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, 23284-3068, USA

Tài liệu tham khảo

Schubert, 2006 Avrutin, 2010, Bulk GaN and AlN: progress and challenges, Special Issue of Proc. of IEEE on “Challenges and Opportunities in GaN and ZnO Devices and Materials”, 98, 1302 Amano, 1998, Stress and defect control in GaN using low temperature interlayers, Jpn. J. Appl. Phys., 37, L1540, 10.1143/JJAP.37.L1540 Morkoç, 2008 Xie, 2007, Low dislocation densities and long carrier lifetimes in GaN thin films grown on a SiNx nanonetwork, Appl. Phys. Lett., 90, 10.1063/1.2433754 Kappers, 2007, Threading dislocation reduction in (0001) GaN thin films using SiNx interlayers, J. Cryst. Growth, 300, 70, 10.1016/j.jcrysgro.2006.10.205 Filoche, 2017, Localization landscape theory of disorder in semiconductors. I. Theory and modeling, Phys. Rev. B, 95, 10.1103/PhysRevB.95.144204 Piccardo, 2017, Localization landscape theory of disorder in semiconductors. II. Urbach tails of disordered quantum well layers, Phys. Rev. B, 95, 10.1103/PhysRevB.95.144205 Li, 2017, Localization landscape theory of disorder in semiconductors. III. Application to Carrier transport and recombination in light emitting diodes, Phys. Rev. B, 95, 10.1103/PhysRevB.95.144206 Tsai, 2016, Effects of underlying InGaN/GaN superlattice structures on the structural and optical properties of InGaN LEDs, J. Lumin., 174, 36, 10.1016/j.jlumin.2016.01.033 Chichibu, 2006, Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors, Nat. Mater., 5, 810, 10.1038/nmat1726 Chen, 2006, Orange–red light-emitting diodes based on a prestrained InGaN–GaN quantum-well epitaxy structure, IEEE Photon. Technol. Lett., 18, 2269, 10.1109/LPT.2006.884884 O'Donnell, 1999, Origin of luminescence from InGaN diodes, Phys. Rev. Lett., 82, 237, 10.1103/PhysRevLett.82.237 Dawson, 2016, The nature of carrier localisation in polar and nonpolar InGaN/GaN quantum wells, J. Appl. Phys., 119, 10.1063/1.4948237 Lefebvre, 2001, Carrier dynamics in group-III nitride low-dimensional systems: localization versus quantum-confined Stark effect, Phys. Stat. Sol.(b), 228, 65, 10.1002/1521-3951(200111)228:1<65::AID-PSSB65>3.0.CO;2-W Galtrey, 2007, Three-dimensional atom probe studies of an InxGa1−xN/GaN multiple quantum well structure: assessment of possible indium clustering, Appl. Phys. Lett., 90, 10.1063/1.2431573 Galtrey, 2008, Three-dimensional atom probe analysis of green- and blue-emitting InxGa1−xN/GaN multiple quantum well structures, J. Appl. Phys., 104, 10.1063/1.2938081 Humphreys, 2017, The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem, Ultramicroscopy, 176, 93, 10.1016/j.ultramic.2017.01.019 Hangleiter, 2005, Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.127402 Hangleiter, 2007, Anti-localization suppresses non-radiative recombination in GaInN/GaN quantum wells, Philos. Mag. A, 87 Ryou, 2009, Control of quantum-confined Stark effect in InGaN-based quantum wells, IEEE J. Sel. Top. Quantum Electron., 15, 1080, 10.1109/JSTQE.2009.2014170 Takeuchi, 1997, Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells, Jpn. J. Appl. Phys., 36, L382, 10.1143/JJAP.36.L382 Nanhui, 2007, Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction, Solid State Electron., 51, 860, 10.1016/j.sse.2007.04.007 Nardelli, 1997, Polarization field effects on the electron-hole recombination dynamics in In0.2Ga0.8N/In1-xGaxN multiple quantum wells, Appl. Phys. Lett., 71, 3135, 10.1063/1.120269 Alam, 2017, InGaN/InGaN multiple-quantum-well grown on InGaN/GaN semi-bulk buffer for blue to cyan emission with improved optical emission and efficiency droop, Superlattices Microstruct., 104, 291, 10.1016/j.spmi.2017.02.036 Zhang, 2012, Photoluminescence studies of polarization effects in InGaN/(In)GaN multiple quantum well structures, Jap. J. Appl. Phys., 51, 10.7567/JJAP.51.030207 Huang, 2007, Reduced injection current induced blueshift in an InGaN/GaN quantum-well light-emitting diode of prestrained growth, Appl. Phys. Lett., 91, 10.1063/1.2767243 Lu, 2013, Investigation of the electroluminescence spectrum shift of InGaN/GaN multiple quantum well light-emitting diodes under direct and pulsed currents, J. Appl. Phys., 113, 10.1063/1.4772683 Liu, 2011, Influence of indium composition in the prestrained InGaN interlayer on the strain relaxation of InGaN/GaN multiple quantum wells in laser diode structures, J. Appl. Phys., 109 Chen, 2006, Transmission electron microscopy study on pre-strained InGaN/GaN quantum wells, J. Cryst. Growth, 297, 66, 10.1016/j.jcrysgro.2006.08.040 Huang, 2008, Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth, J. Appl. Phys., 104, 10.1063/1.3046582 Huang, 2006, Prestrained effect on the emission properties of InGaN/GaN quantum-well structures, Appl. Phys. Lett., 89 Shiao, 2007, X-ray diffraction study on an InGaN/GaN quantum-well structure of prestrained growth, J. Appl. Phys., 101, 10.1063/1.2736860 Takahashi, 2004, Enhanced radiative efficiency in blue (In,Ga)N multiple-quantum-well light-emitting diodes with an electron reservoir layer, Physica E, 21, 876, 10.1016/j.physe.2003.11.142 Leem, 2008, The effect of the low-mole InGaN structure and InGaN/GaN strained layer superlattices on optical performance of multiple quantum well active layers, J. Cryst. Growth, 311, 103, 10.1016/j.jcrysgro.2008.10.047 Li, 2013, The effect of InGaN underlayers on the electronic and optical properties of InGaN/GaN quantum wells, Appl. Phys. Lett., 102 Nanhui, 2006, Improved quality of InGaN/GaN multiple quantum wells by a strain relief layer, J. Cryst. Growth, 286, 209, 10.1016/j.jcrysgro.2005.09.027 Sheu, 2001, Enhanced output power in an InGaN–GaN multiquantum-well light-emitting diode with an InGaN current-spreading layer, IEEE Photon. Technol. Lett., 13, 1164, 10.1109/68.959351 Zheng, 2012, Role of InGaN insertion layer on nitride-based light-emitting diodes, Jap. J. Appl. Phys., 51, 10.7567/JJAP.51.072101 Özgür, 2011, Ballistic transport in InGaN-based LEDs: impact on efficiency, Semicond. Sci. Technol., 26, 10.1088/0268-1242/26/1/014022 Avrutin, 2013, InGaN light-emitting diodes: efficiency-limiting processes at high injection, J. Vac. Sci. Technol. A, 31, 10.1116/1.4810789 Ni, 2010, InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes, Appl. Phys. Lett., 97, 10.1063/1.3465658 Avrutin, 2014, Saga of efficiency degradation at high injection in InGaN light emitting diodes, Turk. J. Phys., 38, 269, 10.3906/fiz-1407-23 Schmidt, 2014, Nano-scale luminescence characterization of individual InGaN/GaN quantum wells stacked in a microcavity using scanning transmission electron microscope cathodoluminescence, Appl. Phys. Lett., 105, 10.1063/1.4890670 Ryou, 2008, Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes, Appl. Phys. Lett., 92, 10.1063/1.2894514 Zhao, 2012, A modified simplified coherent potential approximation model of band gap energy of III-V ternary alloys, Sci. China Phys. Mech. Astron., 55, 400, 10.1007/s11433-012-4636-6 Ra, 2013, Radial growth behavior and characteristics of m-plane In0.16Ga0.84N/GaN MQW nanowires by MOCVD, Cryst. Eng. Comm., 15, 10.1039/c2ce26842f Moon, 2003, Growth-temperature dependent property of GaN barrier layer and its effect on InGaN/GaN multiple quantum well light-emitting diodes, J. Korean Phys. Soc., 42, 557 Holec, 2007, Critical thickness calculations for InGaN/GaN, J. Cryst. Growth, 303, 314, 10.1016/j.jcrysgro.2006.12.054 Holec, 2008, Equilibrium critical thickness for misfit dislocations in III-nitrides, J. Appl. Phys., 104, 10.1063/1.3033553