In vivo and In vitro Interactions between Pseudomonas aeruginosa and Staphylococcus spp.

An Hotterbeekx1, Samir Kumar‐Singh1,2, Herman Goossens1, Surbhi Malhotra‐Kumar1
1Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute , University of Antwerp, Wilrijk, Belgium
2Molecular Pathology Group, Cell Biology and Histology, University of Antwerp, Wilrijk, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Antonic, 2013, Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus, Infect. Drug Resist., 6, 175, 10.2147/IDR.S49039

Armbruster, 2016, Staphylococcus aureus protein A mediates interspecies interactions at the cell surface of Pseudomonas aeruginosa, MBio, 7, e00538, 10.1128/mBio.00538-16

Atalla, 2011, Staphylococcus aureus small colony variants (SCVs) and their role in disease, Anim. Health Res. Rev., 12, 33, 10.1017/S1466252311000065

Baldan, 2014, Adaptation of Pseudomonas aeruginosa in Cystic Fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection, PLoS ONE, 9, 89614, 10.1371/journal.pone.0089614

Barequet, 2009, Evaluation of Pseudomonas aeruginosa staphylolysin (LasA protease) in the treatment of methicillin-resistant Staphylococcus aureus endophthalmitis in a rat model, Graefes Arch. Clin. Exp. Ophthalmol., 247, 913, 10.1007/s00417-009-1061-2

Billings, 2013, The extracellular matrix Component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms, PLoS Pathog., 9, e1003526, 10.1371/journal.ppat.1003526

Biswas, 2009, Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa, Appl. Environ. Microbiol., 75, 6910, 10.1128/aem.01211-09

Boles, 2008, Agr-mediated dispersal of Staphylococcus aureus biofilms, PLoS Pathog., 4, e1000052, 10.1371/journal.ppat.1000052

Burmolle, 2014, Interactions in multispecies biofilms: do they actually matter?, Trends Microbiol., 22, 84, 10.1016/j.tim.2013.12.004

Cystic Fibrosis Foundation, 2014, 2013 patient registry annual data report

Cystic Fibrosis Foundation Patient Registry, 2012, 2011 annual data report

Caldwell, 2009, Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis, Am. J. Pathol., 175, 2473, 10.2353/ajpath.2009.090166

Chew, 2014, Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides, MBio, 5, e01536, 10.1128/mBio.01536-14

Chu, 2013, A new class of quorum quenching molecules from Staphylococcus species affects communication and growth of gram-negative bacteria, PLoS Pathog., 9, e1003654, 10.1371/journal.ppat.1003654

Colvin, 2011, The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa, PLoS Pathog., 7, e1001264, 10.1371/journal.ppat.1001264

Colvin, 2012, The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix, Environ. Microbiol., 14, 1913, 10.1111/j.1462-2920.2011.02657.x

Dalton, 2011, An in vivo polymicrobial biofilm wound infection model to study interspecies interactions, PLoS ONE, 6, e27317, 10.1371/journal.pone.0027317

Davies, 2009, A fatty acid messenger is responsible for inducing dispersion in microbial biofilms, J. Bacteriol., 191, 1393, 10.1128/jb.01214-08

DeLeon, 2014, Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model, Infect. Immun., 82, 4718, 10.1128/iai.02198-14

Deziel, 2004, Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication, Proc. Natl. Acad. Sci. U.S.A., 101, 1339, 10.1073/pnas.0307694100

Diggle, 2007, The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment, Chem. Biol., 14, 87, 10.1016/j.chembiol.2006.11.014

Donlan, 2002, Biofilms: survival mechanisms of clinically relevant microorganisms, Clin. Microbiol. Rev., 15, 167, 10.1128/CMR.15.2.167-193.2002

Duan, 2003, Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication, Mol. Microbiol., 50, 1477, 10.1046/j.1365-2958.2003.03803.x

Falcon, 1989, L-form-like colonies of Staphylococcus aureus induced by an extracellular lytic enzyme from Pseudomonas aeruginosa, J. Clin. Microbiol., 27, 1650, 10.1128/JCM.27.7.1650-1654.1989

Fazli, 2009, Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds, J. Clin. Microbiol., 47, 4084, 10.1128/jcm.01395-09

Federle, 2003, Interspecies communication in bacteria, J. Clin. Invest., 112, 1291, 10.1172/jci20195

Flemming, 2010, The biofilm matrix, Nat. Rev. Microbiol., 8, 623, 10.1038/nrmicro2415

Fugére, 2014, Interspecific small molecule interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients, PLoS ONE, 9, e86705, 10.1371/journal.pone.0086705

Gibson, 2009, Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative, Appl. Environ. Microbiol., 75, 504, 10.1128/AEM.01037-08

Haba, 2003, Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044, Biotechnol. Bioeng., 81, 316, 10.1002/bit.10474

Hall-Stoodley, 2005, Biofilm formation and dispersal and the transmission of human pathogens, Trends Microbiol., 13, 7, 10.1016/j.tim.2004.11.004

Hall-Stoodley, 2004, Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2, 95, 10.1038/nrmicro821

Harrison, 2007, Microbial ecology of the cystic fibrosis lung, Microbiology, 153, 917, 10.1099/mic.0.2006/004077-0

Hauser, 2009, The type III secretion system of Pseudomonas aeruginosa: infection by injection, Nat. Rev. Microbiol., 7, 654, 10.1038/nrmicro2199

Hauser, 2011, Clinical significance of microbial infection and adaptation in cystic fibrosis, Clin. Microbiol. Rev., 24, 29, 10.1128/CMR.00036-10

Hoffman, 2006, Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U.S.A., 103, 19890, 10.1073/pnas.0606756104

Hotterbeekx, 2016, The endotracheal tube microbiome associated with Pseudomonas aeruginosa or Staphylococcus epidermidis, Sci. Rep., 6, 36507, 10.1038/srep36507

Hubert, 2013, Association between Staphylococcus aureus alone or combined with Pseudomonas aeruginosa and the clinical condition of patients with cystic fibrosis, J. Cyst. Fibros., 12, 497, 10.1016/j.jcf.2012.12.003

Jefferson, 2004, What drives bacteria to produce a biofilm?, FEMS Microbiol. Lett., 236, 163, 10.1111/j.1574-6968.2004.tb09643.x

Jensen, 2007, Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa, Microbiology, 153, 1329, 10.1099/mic.0.2006/003863-0

Jimenez, 2012, The multiple signaling systems regulating virulence in Pseudomonas aeruginosa, Microbiol. Mol. Biol. Rev., 76, 46, 10.1128/MMBR.05007-11

Kessler, 1993, Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease, J. Biol. Chem., 268, 7503, 10.1016/S0021-9258(18)53203-8

Kirketerp-MØller, 2008, Distribution, organization, and ecology of bacteria in chronic wounds, J. Clin. Microbiol., 46, 2717, 10.1128/jcm.00501-08

Korgaonkar, 2011, Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan, J. Bacteriol., 193, 909, 10.1128/JB.01175-10

Korgaonkar, 2013, Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection, Proc. Natl. Acad. Sci. U.S.A., 110, 1059, 10.1073/pnas.1214550110

Kumar, 2015, Presence of Pseudomonas aeruginosa influences biofilm formation and surface protein expression of Staphylococcus aureus, Environ. Microbiol., 17, 4459, 10.1111/1462-2920.12890

Leid, 2005, The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing, J. Immunol., 175, 7512, 10.4049/jimmunol.175.11.7512

Li, 2015, Autoinducer-2 regulates Pseudomonas aeruginosa PAO1 biofilm formation and virulence production in a dose-dependent manner, BMC Microbiol., 15, 192, 10.1186/s12866-015-0529-y

Li, 2012, Quorum sensing and bacterial social interactions in biofilms, Sensors, 12, 2519, 10.3390/s120302519

Lightbown, 1956, Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides, Biochem. J., 63, 130, 10.1042/bj0630130

Machan, 1991, Interaction between Pseudomonas aeruginosa and Staphylococcus aureus: description of an anti-staphylococcal substance, J. Med. Microbiol., 34, 213, 10.1099/00222615-34-4-213

Machan, 1992, 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa, J. Antimicrob. Chemother., 30, 615, 10.1093/jac/30.5.615

Mashburn, 2005, Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture, J. Bacteriol., 187, 554, 10.1128/JB.187.2.554-566.2005

Mitchell, 2010, Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide, BMC Microbiol., 10, 33, 10.1186/1471-2180-10-33

Oscarsson, 2006, SarA is a repressor of hla (α-hemolysin) transcription in Staphylococcus aureus: its apparent role as an activator of hla in the prototype strain NCTC 8325 depends on reduced expression of sarS, J. Bacteriol., 188, 8526, 10.1128/JB.00866-06

Palmer, 2005, Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology, J. Bacteriol., 187, 5267, 10.1128/jb.187.15.5267-5277.2005

Pastar, 2013, Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection, PLoS ONE, 8, e56846, 10.1371/journal.pone.0056846

Petrova, 2016, Escaping the biofilm in more than one way: desorption, detachment or dispersion, Curr. Opin. Microbiol., 30, 67, 10.1016/j.mib.2016.01.004

Pihl, 2013, Biofilm formation by Staphylococcus epidermidis on peritoneal dialysis catheters and the effects of extracellular products from Pseudomonas aeruginosa, Pathog. Dis., 67, 192, 10.1111/2049-632X.12035

Pihl, 2010b, Effects of clinical isolates of Pseudomonas aeruginosa on Staphylococcus epidermidis biofilm formation, FEMS Immunol. Med. Microbiol., 59, 504, 10.1111/j.1574-695X.2010.00707.x

Pihl, 2010a, Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis, FEMS Immunol. Med. Microbiol., 59, 439, 10.1111/j.1574-695X.2010.00697.x

Proctor, 2006, Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections, Nat. Rev. Microbiol., 4, 295, 10.1038/nrmicro1384

Qazi, 2006, N-acylhomoserine lactones antagonize virulence gene expression and quorum sensing in Staphylococcus aureus, Infect. Immun., 74, 910, 10.1128/IAI.74.2.910-919.2006

Qin, 2009, Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis, Microbiology, 155, 2148, 10.1099/mic.0.028001-0

Rezzonico, 2012, Detection of AI-2 receptors in genomes of Enterobacteriaceae suggests a role of type-2 quorum sensing in closed ecosystems, Sensors, 12, 6645, 10.3390/s120506645

Rodrigues, 2006, Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants, J. Appl. Microbiol., 100, 470, 10.1111/j.1365-2672.2005.02826.x

Ruscher, 2009, Prevalence of Methicillin-resistant Staphylococcus pseudintermedius isolated from clinical samples of companion animals and equidaes, Vet. Microbiol., 136, 197, 10.1016/j.vetmic.2008.10.023

Ryder, 2007, Role of polysaccharides in Pseudomonas aeruginosa biofilm development, Curr. Opin. Microbiol., 10, 644, 10.1016/j.mib.2007.09.010

Sagel, 2009, Impact of Pseudomonas and Staphylococcus infection on inflammation and clinical status in young children with cystic fibrosis, J. Pediatr., 154, 183, 10.1016/j.jpeds.2008.08.001

Seth, 2012, Quantitative comparison and analysis of species-specific wound biofilm virulence using an in vivo, rabbit-ear model, J. Am. Coll. Surg., 215, 388, 10.1016/j.jamcollsurg.2012.05.028

Sibley, 2008, Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections, PLoS Pathog., 4, e1000184, 10.1371/journal.ppat.1000184

Simou, 2005, Species specificity in the adherence of staphylococci to canine and human corneocytes: a preliminary study, Vet. Dermatol., 16, 156, 10.1111/j.1365-3164.2005.00452.x

Soberón-Chávez, 2005, Production of rhamnolipids by Pseudomonas aeruginosa, Appl. Microbiol. Biotechnol., 68, 718, 10.1007/s00253-005-0150-3

Sotirova, 2008, Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains, Curr. Microbiol., 56, 639, 10.1007/s00284-008-9139-3

Strateva, 2011, Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections, Ann. Microbiol., 61, 717, 10.1007/s13213-011-0273-y

Tashiro, 2013, Interspecies interaction between Pseudomonas aeruginosa and other microorganisms, Microbes Environ., 28, 13, 10.1264/jsme2.ME12167

Toyofuku, 2010, The effect of a cell-to-cell communication molecule, Pseudomonas quinolone signal (PQS), produced by P. aeruginosa on other bacterial species, Microbes Environ., 25, 1, 10.1264/jsme2.ME09156

Valle, 2003, SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus, Mol. Microbiol., 48, 1075, 10.1046/j.1365-2958.2003.03493.x

van Schaik, 2005, The role of sigmaB in the stress response of Gram-positive bacteria – targets for food preservation and safety, Curr. Opin. Biotechnol., 16, 218, 10.1016/j.copbio.2005.01.008

Voggu, 2006, Microevolution of cytochrome bd oxidase in Staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas, J. Bacteriol., 188, 8079, 10.1128/jb.00858-06

Wang, 2016, Autoinducer-2 of Streptococcus mitis as a target molecule to inhibit pathogenic multi-species biofilm formation in vitro and in an endotracheal intubation rat model, Front. Microbiol., 7, 88, 10.3389/fmicb.2016.00088

Watters, 2016, Host responses to biofilm, Prog. Mol. Biol. Transl. Sci., 142, 193, 10.1016/bs.pmbts.2016.05.007

Whiley, 2014, Differential potentiation of the virulence of the Pseudomonas aeruginosa cystic fibrosis liverpool epidemic strain by oral commensal Streptococci, J. Infect. Dis., 209, 769, 10.1093/infdis/jit568

Williams, 2009, Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules, Curr. Opin. Microbiol., 12, 182, 10.1016/j.mib.2009.01.005

Yang, 2011, Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa, FEMS Immunol. Med. Microbiol., 62, 339, 10.1111/j.1574-695X.2011.00849.x

Zezzi do Valle Gomes, 2012, Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria, Food Control, 25, 441, 10.1016/j.foodcont.2011.11.025