In vitro studies of biofilm-forming Bacillus strains, biocontrol agents isolated from the maize phyllosphere
Tài liệu tham khảo
Kovács, 2019, Evolved Biofilm: review on the experimental evolution studies of Bacillus subtilis pellicles, J Mol Biol, 431, 4749, 10.1016/j.jmb.2019.02.005
Adnan, 2010, Contribution of rpoS and bolA genes in biofilm formation in Escherichia coli K-12 MG1655, Mol Cell Biochem, 342, 207, 10.1007/s11010-010-0485-7
Morris, 1998, A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere, Appl Environ Microbiol, 64, 4789, 10.1128/AEM.64.12.4789-4795.1998
Fett, 2000, Naturally occurring biofilms on alfalfa and other types of sprouts, J Food Protect, 63, 625, 10.4315/0362-028X-63.5.625
Monier, 2005, Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces, Microb Ecol, 49, 343, 10.1007/s00248-004-0007-9
Chaudhry, 2021, Shaping the leaf microbiota: plant-microbe-microbe interactions, J Exp Bot, 72, 36, 10.1093/jxb/eraa417
Bartolini, 2019, Stress responsive alternative sigma factor SigB plays a positive role in the antifungal proficiency of Bacillus subtilis, Appl Environ Microbiol, 85, 10.1128/AEM.00178-19
Morris, 2003, The ecological significance of biofilm formation by plant-associated bacteria, Annu Rev Phytopathol, 41, 429, 10.1146/annurev.phyto.41.022103.134521
Thapa, 2018, Prospecting the characteristics and significance of the phyllosphere microbiome, Ann Microbiol, 68, 229, 10.1007/s13213-018-1331-5
Andrews, 2000, The ecology and biogeography of microorganisms on plant surfaces, Annu Rev Phytopathol, 38, 145, 10.1146/annurev.phyto.38.1.145
Hirano, 2000, Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae —a pathogen, ice nucleus, and epiphyte, Microbiol Mol Biol Rev, 64, 624, 10.1128/MMBR.64.3.624-653.2000
Hashem, 2019, Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress, Saudi J Biol Sci, 26, 1291, 10.1016/j.sjbs.2019.05.004
Pfeilmeier, 2016, Bacterial pathogenesis of plants: future challenges from a microbial perspective: challenges in bacterial molecular plant pathology, Mol Plant Pathol, 17, 1298, 10.1111/mpp.12427
Trabelsi, 2013, Microbial inoculants and their impact on soil microbial communities: a review, BioMed Res Int, 2013, 10.1155/2013/863240
Bridier, 2011, The Spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated, model and in situ Imaging, PLoS One, 6, 10.1371/journal.pone.0016177
Habimana, 2011, Spatial competition with Lactococcus lactis in mixed-species continuous-flow biofilms inhibits Listeria monocytogenes growth, Biofouling, 27, 1065, 10.1080/08927014.2011.626124
Velmourougane, 2017, Agriculturally important microbial biofilms: present status and future prospects, J Basic Microbiol, 57, 548, 10.1002/jobm.201700046
Pertot, 2013, Limited impact of abiotic stress on surfactin production in planta and on disease resistance induced by Bacillus amyloliquefaciens S499 in tomato and bean, FEMS Microbiol Ecol, 86, 505, 10.1111/1574-6941.12177
Bolsa de Comercio de Rosario (BCR)
Navarro, 2021, Assessment of physiological races of Exserohilum turcicum isolates from maize in Argentina and Brazil, Trop Plant Pathol, 46, 371, 10.1007/s40858-020-00417-x
Sartori, 2015, Selection of potential biological control of Exserohilum turcicum with epiphytic microorganisms from maize, Rev Argent Microbiol, 47, 62
Sartori, 2017, Efficacy of epiphytic bacteria to prevent northern leaf blight caused by Exserohilum turcicum in maize, Rev Argent Microbiol, 49, 75
Sartori, 2017, Preliminary evaluation of biocontrol agents against maize pathogens Exserohilum turcicum and Puccinia sorghi in field assays, Agric Sci, 1003
Sartori, 2020, Studies on possible modes of action and tolerance to environmental stress conditions of different biocontrol agents of foliar diseases in maize, Agric Sci, 11, 552
Holt, 1994
Rocca, 2020, Presentación del sitio web de la Red Nacional de Identificación Microbiológica por Espectrometría de Masas. Manual para la interpretación de resultados de MALDI-TOF MS, Rev Argent Microbiol, 52, 83
Beauregard, 2013, Bacillus subtilis biofilm induction by plant polysaccharides, Proc Natl Acad Sci U S A, 110, 1621, 10.1073/pnas.1218984110
Bucher, 2016, Methodologies for studying B. Subtilis biofilms as a model for characterizing small molecule biofilm inhibitors, JoVE, 1–11
Branda, 2001, Fruiting body formation by Bacillus subtilis, Proc Natl Acad Sci U S A, 98, 11621, 10.1073/pnas.191384198
Lemon, 2008, Biofilm development with an emphasis on Bacillus subtilis, 1, 10.1007/978-3-540-75418-3_1
Gallegos-Monterrosa, 2016, Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium, Microbiology, 162, 1922, 10.1099/mic.0.000371
Branda, 2006, A major protein component of the Bacillus subtilis biofilm matrix, Mol Microbiol, 59, 1229, 10.1111/j.1365-2958.2005.05020.x
Zhu, 2020, Role of biofilm formation by Bacillus pumilus HR10 in biocontrol against pine seedling damping-offdisease caused by Rhizoctonia solani, Forests, 11, 1, 10.3390/f11060652
Allkja, 2020, Minimum information guideline for spectrophotometric and fluorometric methods to assess biofilm formation in microplates, Biofilms, 2
Stepanović, 2000, A modified microtiter-plate test for quantification of staphylococcal biofilm formation, J Microbiol Methods, 40, 175, 10.1016/S0167-7012(00)00122-6
Bartolini, 2019, Assessing different ways of Bacillus subtilis spreading over abiotic surfaces, Bio-Protocol, 9, 1, 10.21769/BioProtoc.3425
Grau, 2015, A duo of potassium-responsive histidine kinases govern the multicellular destiny of Bacillus subtilis, mBio, 6, 1, 10.1128/mBio.00581-15
Cotes, 2018, Diseño conceptual, selección y prueba de concepto de microorganismos biocontroladores, 598
Fan, 2017, Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an ‘operational group B. amyloliquefaciens’ within the B. subtilis species complex, Front Microbiol, 8, 1, 10.3389/fmicb.2017.00022
Starostin, 2015, Identification of Bacillus strains by MALDI TOF MS using geometric approach, Sci Rep, 5, 1, 10.1038/srep16989
Celandroni, 2019, Identification of Bacillus species: implication on the quality of probiotic formulations, PLoS One, 14, 10.1371/journal.pone.0217021
Fan, 2018, Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol, Front Microbiol, 9, 2491, 10.3389/fmicb.2018.02491
Couretot, 2013, 7
Lindow, 2003, Microbiology of the phyllosphere, Appl Environ Microbiol, 69, 1875, 10.1128/AEM.69.4.1875-1883.2003
Montemarani, 2018, Influence of crop residues, matric potential and temperature on growth of Exserohilum turcicum an emerging maize pathogen in Argentina, Lett Appl Microbiol, 67, 614, 10.1111/lam.13076
Kearns, 2005, A master regulator for biofilm formation by Bacillus subtilis, Mol Microbiol, 55, 739, 10.1111/j.1365-2958.2004.04440.x
Thérien, 2020, Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis, Biofilms, 2
Dergham, 2021, Comparison of the genetic features involved in Bacillus subtilis biofilm formation using multi-culturing approaches, Microorganisms, 9, 633, 10.3390/microorganisms9030633
Priester, 2007, Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy, J Microbiol Methods, 68, 577, 10.1016/j.mimet.2006.10.018
Bossù, 2020, Characterization of Scardovia wiggsiae Biofilm by original scanning electron microscopy protocol, Microorganisms, 8, 807, 10.3390/microorganisms8060807
Gingichashvili, 2019, The adaptive morphology of Bacillus subtilis biofilms: a defense mechanism against bacterial starvation, Microorganisms, 8, 62, 10.3390/microorganisms8010062
Asally, 2012, Localized cell death focuses mechanical forces during 3D patterning in a biofilm, Proc Natl Acad Sci U S A, 109, 18891, 10.1073/pnas.1212429109
Shemesh, 2013, A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via Histidine Kinase KinD Signaling, J Bacteriol, 195, 2747, 10.1128/JB.00028-13
Oppenheimer-Shaanan, 2016, Spatio-temporal assembly of functional mineral scaffolds within microbial biofilms, npj Biofilms Microbiome, 2, 10.1038/npjbiofilms.2015.31
Arabolaza, 2003, Characterization of a novel inhibitory feedback of the anti-anti-sigma SpoIIAA on Spo0A activation during development in Bacillus subtilis, Mol Microbiol, 47, 1251, 10.1046/j.1365-2958.2003.03376.x
Wang, 2017, Morphologies and phenotypes in Bacillus subtilis biofilms, J Microbiol, 55, 619, 10.1007/s12275-017-7041-z
Magan, 1984, Effect of water activity and temperature on mycotoxin production by Alternaria alternata in culture and wheat grain, Appl Environ Microbiol, 47, 1113, 10.1128/aem.47.5.1113-1117.1984
O'Toole, 2000, Biofilm formation as microbial development, Annu Rev Microbiol, 54, 49, 10.1146/annurev.micro.54.1.49
Yu, 2013, Effect of light quality on Bacillus amyloliquefaciens JBC36 and its biocontrol efficacy, Biol Control, 64, 203, 10.1016/j.biocontrol.2012.11.004
Ostrov, 2019, Adaptation of Bacillus species to dairy associated environment facilitates their biofilm forming ability, Food Microbiol, 82, 316, 10.1016/j.fm.2019.02.015
Julkowska, 2005, Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the Medium, J Bacteriol, 187, 65, 10.1128/JB.187.1.65-76.2005
Abee, 2011, Biofilm formation and dispersal in Gram-positive bacteria, Curr Opin Biotechnol, 22, 172, 10.1016/j.copbio.2010.10.016
Kobayashi, 2007, Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes, J Bacteriol, 189, 4920, 10.1128/JB.00157-07
Vlamakis, 2007, Control of cell fate by the formation of an architecturally complex bacterial community, Chemtracts, 22, 945
Bais, 2004, Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production, Plant Physiol, 134, 307, 10.1104/pp.103.028712
Chen, 2013, Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation, Environ Microbiol, 15, 848, 10.1111/j.1462-2920.2012.02860.x
Pandin, 2019, Biofilm formation and synthesis of antimicrobial compounds by the biocontrol agent Bacillus velezensis QST713 in an Agaricus bisporus compost micromodel, Appl Environ Microbiol, 85, 1, 10.1128/AEM.00327-19
Nagórska, 2007, Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent, Acta Biochim Pol, 54, 495, 10.18388/abp.2007_3224
Jeyaram, 2011, Distinct differentiation of closely related species of Bacillus subtilis group with industrial importance, J Microbiol Methods, 87, 161, 10.1016/j.mimet.2011.08.011
Gómez, 2013, Biofilm score: is it a differential element within gram negative bacilli?, Rev Española Quimioter, 26, 97
Liu, 2011, Effect of heat shock treatment on stress tolerance and biocontrol efficacy Metschnikowia fructicola, FEMS Microbiol Ecol, 76, 145, 10.1111/j.1574-6941.2010.01037.x
Rabbee, 2019, Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes, Molecules, 24, 1046, 10.3390/molecules24061046