In-vitro starch and protein digestibility and proximate composition of soybean flour fermented with lactic acid bacteria (LAB) consortia

Agriculture and Natural Resources - Tập 52 - Trang 503-509 - 2018
Alloysius Chibuike Ogodo1, Ositadinma Chinyere Ugbogu2, Reginald Azu Onyeagba2, Hope Chukwuemeka Okereke2
1Department of Microbiology, Faculty of Pure and Applied Sciences, Federal University Wukari, P.M.B. 1020, Wukari, Taraba State, Nigeria
2Department of Microbiology, Faculty of Biological and Physical Sciences, Abia State University Uturu, P.M.B. 2000, Uturu, Abia State, Nigeria

Tài liệu tham khảo

Adebowale, 2011, Effect of fermentation period on the chemical composition and functional properties of pigeon peas (Cajanus cajan) seed flour, Inter. Food Res. J., 18, 1329‒1333 Adegbehingbe, 2014, Microbiological analyses and nutrient composition of sorghum co–fermented with Lima bean seeds, Curr. Res. Microbiol. Biotechnol., 2, 431 Adelakun, 2013, Potential use of soybean flour (Glycine max) Afify, 2011, Effect of gamma radiation on protein profile, protein fraction and solubility of three oil seeds, Not. Bot. Horti. Agrobo., 39, 90, 10.15835/nbha3926252 Akubugwo, 2006 Amankwah, 2009, Effect of fermentation and malting on the viscosity of maize–soyabean weaning blends, Pakistan J. Nutr., 8, 1671, 10.3923/pjn.2009.1671.1675 AOAC, 2005 Babalola, 2012, Effect of fermentation on nutritional and anti–nutritional properties of fermenting Soy beans and the antagonistic effect of the fermenting organism on selected pathogens, Inter. Res. J. Microbiol., 3, 333 Barnett, 2000 Chen, 2010, Evaluating nutritional quality of single stage– and two stage–fermented soybean meal, Asian-Australas. J. Anim. Sci., 23, 598, 10.5713/ajas.2010.90341 Chinma, 2009, Effect of germination on the chemical, functional and pasting properties of flours from brown and yellow varieties of tiger nut (Cyperus esculentus), Food Res. Int., 42, 1104, 10.1016/j.foodres.2009.04.024 Dajanta, 2009, Enhanced Glycine production of fermented soybean products by Bacillus species, Acta Biol. Szeged., 53, 93 De-Hoog, 2000 Dueñas, 2012, Bioactive phenolic compounds of soybean (Glycine max cv. Merit): modifications by different microbiological fermentations, Pol. J. Food Nutr. Sci., 62, 241, 10.2478/v10222-012-0060-x El–Beltagi, 2010, Variation in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars. Fats oil, Grasas Aceites, 61, 143, 10.3989/gya.087009 El–Beltagi, 2011, Differences in some constituents, enzymes activity and electrophoretic characterization of different rapeseed (Brassica napus L.) cultivars, Ann. Univ. Oradea–Fascicle Biol. Tom., 18, 39 Fawole, 1988 Hassan, 1995, Effects of fermentation on tannin content and in vitro protein and starch digestibility of two sorghum cultivars, Food Chem., 53, 149, 10.1016/0308-8146(95)90780-B Holt, 1994 Jeff–Agboola, 2006, Effect of Bacillus sphaericus on proximate composition of soybean (Glycine max) for the production of soy iru, Pakistan J. Nutr., 5, 606, 10.3923/pjn.2006.606.607 Kohajdová, 2007, Fermentation of cereals for specific purpose, J. of Food Nutr. Res., 46, 51 Kwon, 2011, Isoflavonoids and peptides from meju, long–term fermented soybeans, increase insulin sensitivity and exert insulinotropic effect in vitro, Nutrition, 27, 244, 10.1016/j.nut.2010.02.004 Larsson, 2005, Whole grain consumption and risk of colorectal cancer: a population–based cohort of 60,000 women, Br. J. Cancer., 92, 1803, 10.1038/sj.bjc.6602543 Maidala, 2013, Effects of different processing methods on the chemical composition and antinutritional factors of soybean [Glycine max (L.) merrill], Pakistan J. Nutr., 12, 1057, 10.3923/pjn.2013.1057.1060 Maidala, 2011, Growth performance of weaner rabbits fed diets containing different processed soybean (Glycine max (L.) Merrill) product Masood, 2011, Beneficial effects of lactic acid bacteria on human beings, Crit. Rev. Microbiol., 37, 91, 10.3109/1040841X.2010.536522 Mohiedeen, 2010, Effect of fermentation on in vitro protein digestibility, protein fractions and amino acids composition of maize (Zea mays Linnaus) cultivars, Electron. J. Environ. Agric. Food Chem., 9, 838 Monjula, 1991, Biochemical changes and in vitro protein digestibility of endosperm of germinating Dolichos lablab, J. Sci. Food Agric., 55, 429 Navi, 1999, A pictorial guide for the identification of mold fungi on sorghum grain. Information Bulletin no. 59, Int. Crops Res. Ins. Semi-Arid Trop., 118 Ntuli, 2013, Microbial and Physicochemical Characterization of maize and wheat flour from a milling company, Lesotho, Int. J. Food Safety, 15, 11 Ogodo, 2015, Bacteriological quality of commercially prepared fermented ogi (Akamu) sold in some parts of south eastern Nigeria, Inter. J. Biol. Biomol. Agri. Food Biotechnol. Eng., 9, 677 Ogodo, 2016, Dynamics of functional properties of maize flours fermented with lactic acid bacteria (LAB)–Consortium isolated from cereals, FUW Trends Sci. Technol., 1, 134 Ojiako, 1997 Ojokoh, 2014, Effect of fermentation on nutrient and anti–nutrient composition of millet (pennisetum glaucum) and soyabean (Glycine max) blend flours, J. Life Sci., 8, 668 Ojokoh, 2013, Effect of fermentation on nutrient and anti–nutrient composition of breadfruit (Treculia africana) and cowpea (Vigna unguiculata) blend flours, Afr. J. Agric. Res., 8, 3566, 10.5897/AJAR12.1944 Ojokoh, 2014, Proximate composition, antinutritional contents and physicochemical properties of breadfruit (Treculia africana) and cowpea (Vigna unguiculata) flour blends fermented with Lactobacillus plantarum, Afr. J. Microbiol. Res., 8, 1352, 10.5897/AJMR2013.6469 Ojokoh, 2015, Effect of fermentation on proximate composition, physicochemical and microbial characteristics of pearl millet (Pennisetum glaucum (L.) R. Br.) and Acha (Digitaria exilis (Kippist) Stapf) flour blends, J. Agric. Biotechnol. Sustain. Dev., 7, 1, 10.5897/JABSD2014.0236 Okereke, 2004, Identification and characterization of Microorganisms, pp. 95‒110, 22 Olalekan, 2010, Comparative study on chemical composition and functional properties of three nigerian legumes (jack beans, pigeon pea and cowpea), J. Emerg. Trends Eng. Appl. Sci., 1, 89 Olanipekun, 2015, Nutritional and microbial attributes of soybean (Glycine max) during fermentation with Rhizopus oligosporus, Food Sci. Qual. Manag., 39, 111 Olanipekun, 2015, Effect of fermentation on antinutritional factors and in vitro protein digestibility of Bambara nut (Voandzeia subterranean L.), Food Sci. Qual. Manag., 39, 98 Onyango, 2013, Effects of malting and fermentation on anti–nutrient reduction and protein digestibility of red sorghum, white sorghum and pearl millet, J. Food Res., 2, 41 Owusu–Kwarteng, 2015, Technological properties and probiotic potential of Lactobacillus fermentum strains isolated from West African fermented millet dough, BMC Microbiol., 15, 261, 10.1186/s12866-015-0602-6 Ramos, 2013, Strain–specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products, Food Microbiol., 22, 10.1016/j.fm.2013.03.010 Roger, 2015, Nutritional properties and antinutritional factors of corn paste (kutukutu) fermented by different strains of lactic acid bacteria, Inter. J. Food Sci., 1, 10.1155/2015/502910 Shobha, 2011, Effect of antioxidant on the shelf life of quality protein maize flour, Indian J. Fund. Appl. Life Sci., 1, 129 Singh, 2012, Effect of fermentation on physicochemical properties & in vitro starch and protein digestibility of selected cereals, Int. J. Agric. Food Sci., 2, 66 Ventimiglia, 2015, Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation, Food Microbiol., 51, 57, 10.1016/j.fm.2015.04.011 Yee, 2000