In vitro growth inhibition of bloodstream forms of Trypanosoma brucei and Trypanosoma congolenseby iron chelators
Tóm tắt
African trypanosomes exert significant morbidity and mortality in man and livestock. Only a few drugs are available for the treatment of trypanosome infections and therefore, the development of new anti-trypanosomal agents is required. Previously it has been shown that bloodstream-form trypanosomes are sensitive to the iron chelator deferoxamine. In this study the effect of 13 iron chelators on the growth of Trypanosoma brucei, T. congolense and human HL-60 cells was tested in vitro. With the exception of 2 compounds, all chelators exhibited anti-trypanosomal activities, with 50% inhibitory concentration (IC50) values ranging between 2.1 – 220 μM. However, the iron chelators also displayed cytotoxicity towards human HL-60 cells and therefore, only less favourable selectivity indices compared to commercially available drugs. Interfering with iron metabolism may be a new strategy in the treatment of trypanosome infections. More specifically, lipophilic iron-chelating agents may serve as lead compounds for novel anti-trypanosomal drug development.
Tài liệu tham khảo
World Health Organization: African trypanosomiasis or sleeping sickness. World Health Organ Fact Sheet. 2001, 259: [http://www.who.int/mediacentre/factsheets/fs259/en/]
World Health Organization: The world health report 2004: changing history. Geneva. 2004
Kristjanson PM, Swallow BM, Rowlands GJ, Kruska RL, de Leeuw PN: Measuring the costs of African animal trypanosomiasis, the potential benefits of control and returns to research. Agr Sys. 1999, 59: 79-98. 10.1016/S0308-521X(98)00086-9.
Croft SL: The current status of antiparasitic chemotherapy. Parasitology. 1997, 114 (Suppl): S3-S15.
Fairlamb AH: Chemotherapy of human African trypanosomiasis: current status and future prospects. Trends Parasitol. 2003, 19: 488-494. 10.1016/j.pt.2003.09.002.
Ross CA, Sutherland DV: Drug resistance in trypamosomatids. Trypanosomiasis and Leishmaniasis: Biology and Control. Edited by: Hide G, Mottram JC, Coombs GH, Holmes PH. 1997, Wallingford, Oxon: CAB International, 259-269.
Matovu E, Seebeck T, Enyaru JCK, Kaminsky R: Drug resistance in Trypanosoma brucei spp., the causative agents of sleeping sickness in man and nagana in cattle. Microbes Infect. 2001, 3: 763-770. 10.1016/S1286-4579(01)01432-0.
Steverding D: Bloodstream forms of Trypanosoma brucei require only small amounts of iron for growth. Parasitol Res. 1998, 84: 59-62. 10.1007/s004360050357.
Breidbach T, Scory S, Krauth-Siegel RL, Steverding D: Growth inhibition of bloodstream forms of Trypanosoma brucei by the iron chelator deferoxamine. Int J Parasitol. 2002, 32: 473-479. 10.1016/S0020-7519(01)00310-1.
Räz B, Iten M, Grether-Bühler Y, Kaminisky R, Brun R: The Alamar Blue® assay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense and T. b. gambiense) in vitro. Acta Trop. 1997, 68: 139-147. 10.1016/S0001-706X(97)00079-X.
Merschjohann K, Sporer F, Steverding D, Wink M: In vitro effect of alkaloids on bloodstream forms of Trypanosoma brucei and T. congolense. Planta Med. 2001, 67: 623-627. 10.1055/s-2001-17351.
Winkelmann G: Microbial siderophore-mediated transport. Biochem Soc Trans. 2002, 30: 691-696. 10.1042/BST0300691.
Peterson CM, Graziano JH, Grady RW, Jones RL, Vlassara HV, Canale VC, Miller DR, Cerami A: Chelation studies with 2,3-dihydroxybenzoic acid in patients with β-thalassaemia major. Br J Haematol. 1976, 33: 477-485.
Salamah AA: Effect of ethylenediamine di-o-hydroxyphenylacetic acid and transferrin on the growth of some bacterial strains in vitro. Microbiologica. 1992, 15: 361-366.
Deterding A, Dungey FA, Thompson K-T, Steverding D: Anti-trypanosomal activities of DNA topoisomerase inhibitors. Acta Trop. 2005, 93: 311-316. 10.1016/j.actatropica.2005.01.005.
White GP, Jacobs A, Grady RW, Cerami A: The effect ofchelating agents on iron mobilization in Chang cell cultures. Blood. 1976, 48: 923-929.
Burgess J, Drasdo DN, Patel MS: Solubilities and solvation of aluminum(III), iron(III), and indium(III) 8-hydroxyquinolinates in methanol/water mixtures. J Pharm Sci. 1994, 83: 54-7.
Boadi WY, Iyere PA, Adunyah SE: Effect of quercetin and genistein on copper- and iron-induced lipid peroxidation in methyl linolenate. J Appl Toxicol. 2003, 23: 363-369. 10.1002/jat.933.
Romeo AM, Christen L, Niles EG, Kosman DJ: Intracellular chelation of iron by bipyridyl inhibits DNA virus replication: ribonucleotide reductase maturation as a probe of intracellular iron pools. J Biol Chem. 2001, 276: 24301-24308. 10.1074/jbc.M010806200.
Mudasir , Wijaya K, Yoshioka N, Inoue H: DNA binding of iron(II) complexes with 1,10-phenanthroline and 4,7-diphenyl-1,10-phenanthroline: salt effect, ligand substituent effect, base pair specificity and binding strength. J Inorg Biochem. 2003, 94: 263-271. 10.1016/S0162-0134(03)00007-2.
Buss JL, Greene BT, Turner J, Torti FM, Torti SV: Iron chelators in cancer chemotherapy. Curr Top Med Chem. 2004, 4: 1623-1635. 10.2174/1568026043387269.
Richardson DR: Molecular mechanisms of iron uptake by cells and the use of iron chelators for the treatment of cancer. Curr Med Chem. 2005, 12: 2711-2729. 10.2174/092986705774462996.
Pahl PM, Horwitz LD: Cell permeable iron chelators as potential cancer chemotherapeutic agents. Cancer Invest. 2005, 23: 683-691. 10.1080/07357900500359976.
Hirumi H, Hirumi K, Doyle JJ, Cross GAM: In vitro cloning of animal-infective bloodstream forms of Trypanosoma brucei. Parasitology. 1980, 80: 371-382.
Kaminsky R, Schmid C, Grether Y, Holý A, De Clercq E, Naesens L, Brun R: (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA]: a purine analogue with trypanocidal activity in vitro and in vivo. Trop Med Int Health. 1996, 1: 255-263.
Baltz T, Baltz D, Giroud C, Crockett J: Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 1985, 4: 1273-1277.
Huber W, Koella JC: A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop. 1993, 55: 257-261. 10.1016/0001-706X(93)90083-N.