In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, De Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115
Prior N, Inacio P, Huch M (2019) Liver organoids: from basic research to therapeutic applications. Gut 68(12):2228–2237
Grebenyuk S, Ranga A (2019) Engineering organoid vascularization. Front Bioeng Biotechnol 7(March):1–12
Si-Tayeb K, Lemaigre FP, Duncan SA (2010) Organogenesis and development of the liver. Dev Cell 18(2):175–189
Ni Y, Li JM, Liu MK, Zhang TT, Wang DP, Zhou WH et al (2021) Pathological process of liver sinusoidal endothelial cells in liver diseases. World J Gastroenterol 23(43):7666–7677
Glicklis R, Merchuk JC, Cohen S (2004) Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Biotechnol Bioeng 86(6):672–680
Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12(4):207–218
Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294(5542):559–563
Han S, Tan C, Ding J, Wang J, Ma’ayan A, Gouon-Evans V (2018) Endothelial cells instruct liver specification of embryonic stem cell-derived endoderm through endothelial VEGFR2 signaling and endoderm epigenetic modifications. Stem Cell Res 30:163–170
Han S, Dziedzic N, Gadue P, Keller GM, Gouon-Evans V (2011) An endothelial cell niche induces hepatic specification through dual repression of Wnt and notch signaling. Stem Cells 29(2):217–228
Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D et al (2017) Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 66(1):212–227
Ware BR, Durham MJ, Monckton CP, Khetani SR (2018) A cell culture platform to maintain long-term phenotype of primary human hepatocytes and endothelial cells. Cmgh 5(3):187–207
Timmins N, Dietmair S, Nielsen L (2004) Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis 7(2):97–103
Inamori M, Mizumoto H, Kajiwara T (2009) An approach for formation of vascularized liver tissue by endothelial cell-covered hepatocyte spheroid integration. Tissue Eng Part A 15(8):2029–2037
Sasaki K, Akagi T, Asaoka T, Eguchi H, Fukuda Y, Iwagami Y et al (2017) Construction of three-dimensional vascularized functional human liver tissue using a layer-by-layer cell coating technique. Biomaterials 133:263–274
Jin Y, Kim J, Lee JS, Min S, Kim S, Ahn DH et al (2018) Vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform. Adv Func Mater 28(37):1–15
Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499(7459):481–484
Irudayaswamy A, Muthiah M, Zhou L, Hung H, Jumat NHB, Haque J et al (2018) Long-term fate of human fetal liver progenitor cells transplanted in injured mouse livers. Stem Cells 36(1):103–113
Li J, Xing F, Chen F, He L, So KF, Liu Y et al (2019) Functional 3D human liver bud assembled from MSC-derived multiple liver cell lineages. Cell Transplant 28(5):510–521
Singh VP, Pratap K, Sinha J, Desiraju K, Bahal D, Kukreti R (2016) Critical evaluation of challenges and future use of animals in experimentation for biomedical research. Int J Immunopathol Pharmacol 29(4):551–561
van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126
Du Y, Li N, Yang H, Luo C, Gong Y, Tong C et al (2017) Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab Chip 17(5):782–794
Li X et al (2017) A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Physiol Behav 176(10):139–48
Jang KJ, Otieno MA, Ronxhi J, Lim HK, Ewart L, Kodella KR et al (2019) Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aax5516
Paek J, Park SE, Lu Q, Park KT, Cho M, Oh JM et al (2019) Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano 13(7):7627–7643
Sobrino A, Phan DTT, Datta R, Wang X, Hachey SJ, Romero-López M et al (2016) 3D microtumors in vitro supported by perfused vascular networks. Sci Rep 6(May):1–11
Phan DTT, Wang X, Craver BM, Sobrino A, Zhao D, Chen JC et al (2017) A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip 17(3):511–520
Zhang S, Wan Z, Kamm RD (2021) Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Lab Chip 21(3):473–488
Oh S, Ryu H, Tahk D, Ko J, Chung Y, Lee HK et al (2017) “Open-Top” microfluidic device for in vitro three-dimensional capillary beds. Lab Chip 17(20):3405–3414
Nashimoto Y, Hayashi T, Kunita I, Nakamasu A, Torisawa YS, Nakayama M et al (2017) Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr Biol (United Kingdom) 9(6):506–518
Nashimoto Y, Okada R, Hanada S, Arima Y, Nishiyama K, Miura T et al (2019) Vascularized cancer on a chip: the effect of perfusion on growth and drug delivery of tumor spheroid. Biomaterials 2020(229):119547
Lin DSY, Rajasekar S, Marway MK, Zhang B (2020) From model system to therapy: scalable production of perfusable vascularized liver spheroids in “open-Top” 384-well plate. ACS Biomater Sci Eng 7:2964–2972
De Fontbrune FS, Mal H, Dauriat G, Brugière O, Biondi G, Taillé C et al (2007) Veno-occlusive disease of the liver after lung transplantation. Am J Transplant 7(9):2208–2211
Jacobi AM, Feist E, Rudolph B, Burmester GR (2004) Sinusoidal dilatation: a rare side effect of azathioprine. Ann Rheum Dis 63(12):1702–1703
Liano F, Moreno A, Matesanz R, Teruel JL, Redondo C, Garcia-Martin F et al (1989) Veno-occlusive hepatic disease of the liver in renal transplantation: Is azathioprine the cause? Nephron 51(4):509–516
Katzka DA, Saul SH, Jorkasky D, Sigal H, Reynolds JC, Soloway RD (1986) Azathioprine and hepatic venocclusive disease in renal transplant patients. Gastroenterology 90(2):446–454
Deleve LD, Wang X, Kuhlenkamp JF, Kaplowitz N (1996) Toxicity of azathioprine and monocrotaline in murine sinusoidal endothelial cells and hepatocytes: the role of glutathione and relevance to hepatic venoocclusive disease. Hepatology 23(3):589–599
Guzm C, Castell V, Donato MT, Martorell A, Torre NA, De D (2016) Human upcyte hepatocytes: characterization of the hepatic phenotype and evaluation for acute and long-term hepatotoxicity routine testing. Toxicol Sci 152(1):214–229
Hu H, Gehart H, Artegiani B, Peters PJ, De JYP, Clevers H et al (2018) Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175:1591–1606
Yildirim E, Trietsch SJ, Joore J, van den Berg A, Hankemeier T, Vulto P (2014) Phaseguides as tunable passive microvalves for liquid routing in complex microfluidic networks. Lab Chip 14(17):3334–3340
Vulto P, Podszun S, Meyer P, Hermann C, Manz A, Urban GA (2011) Phaseguides: a paradigm shift in microfluidic priming and emptying. Lab Chip 11(9):1596–1602
Trietsch SJ, Naumovska E, Kurek D, Setyawati MC, Vormann MK, Wilschut KJ et al (2017) Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat Commun. https://doi.org/10.1038/s41467-017-00259-3
Jang M, Neuzil P, Volk T, Manz A, Kleber A (2015) On-chip three-dimensional cell culture in phaseguides improves hepatocyte functions in vitro. Biomicrofluidics 9(3):34113. https://pubmed.ncbi.nlm.nih.gov/26180570
Jung O, Tung Y-T, Sim E, Chen Y-C, Lee E, Ferrer M et al (2022) Development of human-derived, three-dimensional respiratory epithelial tissue constructs with perfusable microvasculature on a high-throughput microfluidics screening platform. Biofabrication 1(14):25012
Wevers NR, van Vught R, Wilschut KJ, Nicolas A, Chiang C, Lanz HL et al (2016) High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform. Sci Rep 6(1):38856. https://doi.org/10.1038/srep38856
Van Duinen V, Ramakers DZC, Vulto AJVZP (2019) Perfused 3D angiogenic sprouting in a high-throughput in vitro platform. Angiogenesis 22(1):157–165
Hu H, Gehart H, Artegiani B, LÖpez-Iglesias C, Dekkers F, Basak O et al (2018) Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175(6):1591–1606
Kumar S, DeLeve LD, Kamath PS, Tefferi A (2003) Hepatic veno-occlusive disease (sinusoidal obstruction syndrome) after hematopoietic stem cell transplantation. Mayo Clin Proc 78(5):589–598
Shahar B-S, Shira L, Uri M, Shulamit L (2019) Mature vessel networks in engineered tissue promote graft–host anastomosis and prevent graft thrombosis. Proc Natl Acad Sci 116(8):2955–2960. https://doi.org/10.1073/pnas.1814238116
Mishra R, Roux BM, Posukonis M, Bodamer E, Brey EM, Fisher JP, et al (2016) Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds. Biomaterials 77:255–66. https://pubmed.ncbi.nlm.nih.gov/26606451. Accessed 22 Oct, 2015
Gillis P, Savla U, Volpert OV, Jimenez B, Waters CM, Panos RJ et al (1999) Keratinocyte growth factor induces angiogenesis and protects endothelial barrier function. J cell Sci 112(1):2049–2057
McVicar CM, Rice-McCaldin A, Curtis T, Stitt AW, Gardiner TA (2007) Angiogenesis induced by EGF is mediated by autocrine VEGF. Invest Ophthalmol Vis Sci 48(13):1379
Liu F, Li G, Deng L, Kuang B, Li X (2017) The roles of FGF10 in vasculogenesis and angiogenesis. Biomed Res 28:1329–1332
Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski J et al (2001) Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol 158(3):1111–1120
Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1–17
Ouchi R, Togo S, Kimura M, Shinozawa T, Koido M, Koike H et al (2019) Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab 30(2):374–384
Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ et al (2019) Engineering of human brain organoids with a functional vascular-like system. Nat Methods 16(11):1169–1175
Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T et al (2019) Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods 16(3):255–262
Koning M, van den Berg CW, Rabelink TJ (2020) Stem cell-derived kidney organoids: engineering the vasculature. Cell Mol Life Sci 77:2257–2273
Takahashi Y, Takebe T, Taniguchi H (2018) Methods for generating vascularized islet-like organoids via self-condensation. Curr Protoc Stem Cell Biol 45(1):1–12
Koga Y, Ochiai A (2019) Systematic review of patient-derived xenograft models for preclinical studies of anti-cancer drugs in solid tumors. Cells 8(5):418
Lanz HL, Saleh A, Kramer B, Cairns J, Ng CP, Yu J et al (2017) Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer 17(1):1–11
Powley IR, Patel M, Miles G, Pringle H, Howells L, Thomas A et al (2020) Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br J Cancer 122(6):735–744
Meijer TG, Jager A, Gent DC (2017) Ex vivo tumor culture systems for functional drug testing and therapy response prediction. Future Sci OA 3(2):FSO190
Ghosh S, Prasad M, Kundu K, Cohen L, Yegodayev KM, Zorea J et al (2019) Tumor tissue explant culture of patient-derived xenograft as potential prioritization tool for targeted therapy. Front Oncol 9(1):1–12