In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed

Flavio Bonanini1, Dorota Kurek1, Sara Previdi1, Arnaud Nicolas1, Delilah Hendriks2, Sander de Ruiter1, Marine Meyer1, Maria Clapés Cabrer1, Roelof Dinkelberg1, Silvia Bonilla García1, Bart Kramer1, Olivier Thomas1, Huili Hu2, Carmen López‐Iglesias3, Frederik Schavemaker1, Erik Walinga1, Devanjali Dutta2, Karla Queiroz1, Karel Domanský1, Bob Ronden1, Jos Joore1, Henriëtte L. Lanz1, Peter J. Peters3, Sebastiaan J. Trietsch1, Hans Clevers2, Paul Vulto1
1Mimetas, Leiden, The Netherlands
2Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, 3584 CT, Utrecht, The Netherlands
3The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands

Tóm tắt

AbstractWith recent progress in modeling liver organogenesis and regeneration, the lack of vasculature is becoming the bottleneck in progressing our ability to model human hepatic tissues in vitro. Here, we introduce a platform for routine grafting of liver and other tissues on an in vitro grown microvascular bed. The platform consists of 64 microfluidic chips patterned underneath a 384-well microtiter plate. Each chip allows the formation of a microvascular bed between two main lateral vessels by inducing angiogenesis. Chips consist of an open-top microfluidic chamber, which enables addition of a target tissue by manual or robotic pipetting. Upon grafting a liver microtissue, the microvascular bed undergoes anastomosis, resulting in a stable, perfusable vascular network. Interactions with vasculature were found in spheroids and organoids upon 7 days of co-culture with space of Disse-like architecture in between hepatocytes and endothelium. Veno-occlusive disease was induced by azathioprine exposure, leading to impeded perfusion of the vascularized spheroid. The platform holds the potential to replace animals with an in vitro alternative for routine grafting of spheroids, organoids, or (patient-derived) explants.

Từ khóa


Tài liệu tham khảo

Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, De Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115

Prior N, Inacio P, Huch M (2019) Liver organoids: from basic research to therapeutic applications. Gut 68(12):2228–2237

Grebenyuk S, Ranga A (2019) Engineering organoid vascularization. Front Bioeng Biotechnol 7(March):1–12

Si-Tayeb K, Lemaigre FP, Duncan SA (2010) Organogenesis and development of the liver. Dev Cell 18(2):175–189

Ni Y, Li JM, Liu MK, Zhang TT, Wang DP, Zhou WH et al (2021) Pathological process of liver sinusoidal endothelial cells in liver diseases. World J Gastroenterol 23(43):7666–7677

Glicklis R, Merchuk JC, Cohen S (2004) Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Biotechnol Bioeng 86(6):672–680

Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12(4):207–218

Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294(5542):559–563

Han S, Tan C, Ding J, Wang J, Ma’ayan A, Gouon-Evans V (2018) Endothelial cells instruct liver specification of embryonic stem cell-derived endoderm through endothelial VEGFR2 signaling and endoderm epigenetic modifications. Stem Cell Res 30:163–170

Han S, Dziedzic N, Gadue P, Keller GM, Gouon-Evans V (2011) An endothelial cell niche induces hepatic specification through dual repression of Wnt and notch signaling. Stem Cells 29(2):217–228

Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D et al (2017) Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 66(1):212–227

Ware BR, Durham MJ, Monckton CP, Khetani SR (2018) A cell culture platform to maintain long-term phenotype of primary human hepatocytes and endothelial cells. Cmgh 5(3):187–207

Timmins N, Dietmair S, Nielsen L (2004) Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis 7(2):97–103

Inamori M, Mizumoto H, Kajiwara T (2009) An approach for formation of vascularized liver tissue by endothelial cell-covered hepatocyte spheroid integration. Tissue Eng Part A 15(8):2029–2037

Sasaki K, Akagi T, Asaoka T, Eguchi H, Fukuda Y, Iwagami Y et al (2017) Construction of three-dimensional vascularized functional human liver tissue using a layer-by-layer cell coating technique. Biomaterials 133:263–274

Jin Y, Kim J, Lee JS, Min S, Kim S, Ahn DH et al (2018) Vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform. Adv Func Mater 28(37):1–15

Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499(7459):481–484

Irudayaswamy A, Muthiah M, Zhou L, Hung H, Jumat NHB, Haque J et al (2018) Long-term fate of human fetal liver progenitor cells transplanted in injured mouse livers. Stem Cells 36(1):103–113

Li J, Xing F, Chen F, He L, So KF, Liu Y et al (2019) Functional 3D human liver bud assembled from MSC-derived multiple liver cell lineages. Cell Transplant 28(5):510–521

Singh VP, Pratap K, Sinha J, Desiraju K, Bahal D, Kukreti R (2016) Critical evaluation of challenges and future use of animals in experimentation for biomedical research. Int J Immunopathol Pharmacol 29(4):551–561

van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126

Du Y, Li N, Yang H, Luo C, Gong Y, Tong C et al (2017) Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab Chip 17(5):782–794

Li X et al (2017) A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Physiol Behav 176(10):139–48

Jang KJ, Otieno MA, Ronxhi J, Lim HK, Ewart L, Kodella KR et al (2019) Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aax5516

Paek J, Park SE, Lu Q, Park KT, Cho M, Oh JM et al (2019) Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano 13(7):7627–7643

Sobrino A, Phan DTT, Datta R, Wang X, Hachey SJ, Romero-López M et al (2016) 3D microtumors in vitro supported by perfused vascular networks. Sci Rep 6(May):1–11

Phan DTT, Wang X, Craver BM, Sobrino A, Zhao D, Chen JC et al (2017) A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip 17(3):511–520

Zhang S, Wan Z, Kamm RD (2021) Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Lab Chip 21(3):473–488

Oh S, Ryu H, Tahk D, Ko J, Chung Y, Lee HK et al (2017) “Open-Top” microfluidic device for in vitro three-dimensional capillary beds. Lab Chip 17(20):3405–3414

Nashimoto Y, Hayashi T, Kunita I, Nakamasu A, Torisawa YS, Nakayama M et al (2017) Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr Biol (United Kingdom) 9(6):506–518

Nashimoto Y, Okada R, Hanada S, Arima Y, Nishiyama K, Miura T et al (2019) Vascularized cancer on a chip: the effect of perfusion on growth and drug delivery of tumor spheroid. Biomaterials 2020(229):119547

Lin DSY, Rajasekar S, Marway MK, Zhang B (2020) From model system to therapy: scalable production of perfusable vascularized liver spheroids in “open-Top” 384-well plate. ACS Biomater Sci Eng 7:2964–2972

De Fontbrune FS, Mal H, Dauriat G, Brugière O, Biondi G, Taillé C et al (2007) Veno-occlusive disease of the liver after lung transplantation. Am J Transplant 7(9):2208–2211

Jacobi AM, Feist E, Rudolph B, Burmester GR (2004) Sinusoidal dilatation: a rare side effect of azathioprine. Ann Rheum Dis 63(12):1702–1703

Liano F, Moreno A, Matesanz R, Teruel JL, Redondo C, Garcia-Martin F et al (1989) Veno-occlusive hepatic disease of the liver in renal transplantation: Is azathioprine the cause? Nephron 51(4):509–516

Katzka DA, Saul SH, Jorkasky D, Sigal H, Reynolds JC, Soloway RD (1986) Azathioprine and hepatic venocclusive disease in renal transplant patients. Gastroenterology 90(2):446–454

Deleve LD, Wang X, Kuhlenkamp JF, Kaplowitz N (1996) Toxicity of azathioprine and monocrotaline in murine sinusoidal endothelial cells and hepatocytes: the role of glutathione and relevance to hepatic venoocclusive disease. Hepatology 23(3):589–599

Guzm C, Castell V, Donato MT, Martorell A, Torre NA, De D (2016) Human upcyte hepatocytes: characterization of the hepatic phenotype and evaluation for acute and long-term hepatotoxicity routine testing. Toxicol Sci 152(1):214–229

Hu H, Gehart H, Artegiani B, Peters PJ, De JYP, Clevers H et al (2018) Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175:1591–1606

Yildirim E, Trietsch SJ, Joore J, van den Berg A, Hankemeier T, Vulto P (2014) Phaseguides as tunable passive microvalves for liquid routing in complex microfluidic networks. Lab Chip 14(17):3334–3340

Vulto P, Podszun S, Meyer P, Hermann C, Manz A, Urban GA (2011) Phaseguides: a paradigm shift in microfluidic priming and emptying. Lab Chip 11(9):1596–1602

Trietsch SJ, Naumovska E, Kurek D, Setyawati MC, Vormann MK, Wilschut KJ et al (2017) Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat Commun. https://doi.org/10.1038/s41467-017-00259-3

Jang M, Neuzil P, Volk T, Manz A, Kleber A (2015) On-chip three-dimensional cell culture in phaseguides improves hepatocyte functions in vitro. Biomicrofluidics 9(3):34113. https://pubmed.ncbi.nlm.nih.gov/26180570

Jung O, Tung Y-T, Sim E, Chen Y-C, Lee E, Ferrer M et al (2022) Development of human-derived, three-dimensional respiratory epithelial tissue constructs with perfusable microvasculature on a high-throughput microfluidics screening platform. Biofabrication 1(14):25012

Wevers NR, van Vught R, Wilschut KJ, Nicolas A, Chiang C, Lanz HL et al (2016) High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform. Sci Rep 6(1):38856. https://doi.org/10.1038/srep38856

Van Duinen V, Ramakers DZC, Vulto AJVZP (2019) Perfused 3D angiogenic sprouting in a high-throughput in vitro platform. Angiogenesis 22(1):157–165

Hu H, Gehart H, Artegiani B, LÖpez-Iglesias C, Dekkers F, Basak O et al (2018) Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175(6):1591–1606

Kumar S, DeLeve LD, Kamath PS, Tefferi A (2003) Hepatic veno-occlusive disease (sinusoidal obstruction syndrome) after hematopoietic stem cell transplantation. Mayo Clin Proc 78(5):589–598

Shahar B-S, Shira L, Uri M, Shulamit L (2019) Mature vessel networks in engineered tissue promote graft–host anastomosis and prevent graft thrombosis. Proc Natl Acad Sci 116(8):2955–2960. https://doi.org/10.1073/pnas.1814238116

Mishra R, Roux BM, Posukonis M, Bodamer E, Brey EM, Fisher JP, et al (2016) Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds. Biomaterials 77:255–66. https://pubmed.ncbi.nlm.nih.gov/26606451. Accessed 22 Oct, 2015

Gillis P, Savla U, Volpert OV, Jimenez B, Waters CM, Panos RJ et al (1999) Keratinocyte growth factor induces angiogenesis and protects endothelial barrier function. J cell Sci 112(1):2049–2057

McVicar CM, Rice-McCaldin A, Curtis T, Stitt AW, Gardiner TA (2007) Angiogenesis induced by EGF is mediated by autocrine VEGF. Invest Ophthalmol Vis Sci 48(13):1379

Liu F, Li G, Deng L, Kuang B, Li X (2017) The roles of FGF10 in vasculogenesis and angiogenesis. Biomed Res 28:1329–1332

Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski J et al (2001) Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol 158(3):1111–1120

Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1–17

Ouchi R, Togo S, Kimura M, Shinozawa T, Koido M, Koike H et al (2019) Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab 30(2):374–384

Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ et al (2019) Engineering of human brain organoids with a functional vascular-like system. Nat Methods 16(11):1169–1175

Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T et al (2019) Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods 16(3):255–262

Koning M, van den Berg CW, Rabelink TJ (2020) Stem cell-derived kidney organoids: engineering the vasculature. Cell Mol Life Sci 77:2257–2273

Takahashi Y, Takebe T, Taniguchi H (2018) Methods for generating vascularized islet-like organoids via self-condensation. Curr Protoc Stem Cell Biol 45(1):1–12

Koga Y, Ochiai A (2019) Systematic review of patient-derived xenograft models for preclinical studies of anti-cancer drugs in solid tumors. Cells 8(5):418

Lanz HL, Saleh A, Kramer B, Cairns J, Ng CP, Yu J et al (2017) Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer 17(1):1–11

Powley IR, Patel M, Miles G, Pringle H, Howells L, Thomas A et al (2020) Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br J Cancer 122(6):735–744

Meijer TG, Jager A, Gent DC (2017) Ex vivo tumor culture systems for functional drug testing and therapy response prediction. Future Sci OA 3(2):FSO190

Ghosh S, Prasad M, Kundu K, Cohen L, Yegodayev KM, Zorea J et al (2019) Tumor tissue explant culture of patient-derived xenograft as potential prioritization tool for targeted therapy. Front Oncol 9(1):1–12