In vitro culture ofDrosophila ovarian follicles: The influence of different media on development, RNA synthesis, protein synthesis and potassium uptake

Johannes Bohrmann1
1Institut für Biologie I (Zoologie), Universität Freiburg, Freiburg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ambrosio L, Schedl P (1984) Gene expression duringDrosophila melanogaster oogenesis: analysis by in situ hybridization to tissue sections. Dev Biol 105:80–92

Begg M, Cruickshank WJ (1963) A partial analysis ofDrosophila larval haemolymph. Proc R Soc Edin [Biol] 68:215–236

Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nüsslein-Volhard C (1988) The role of localization ofbicoid RNA in organizing the anterior pattern of theDrosophila embryo. EMBO J 7:1749–1756

Bohrmann J, Gutzeit H (1987) Evidence against electrophoresis as the principal mode of protein transport in vitellogenic ovarian follicles ofDrosophila. Development 101:279–288

Bohrmann J, Sander K (1987) Aberrant oogenesis in the patterning mutantdicephalic ofDrosophila melanogaster: time-lapse recordings and volumetry in vitro. Rouxs Arch Dev Biol 196:279–285

Bohrmann J, Heinrich U-R, Dorn A, Sander K, Gutzeit H (1984) Electrical phenomena and their possible significance in vitellogenic follicles ofDrosophila melanogaster. J Embryol Exp Morphol [Suppl] 82:151

Bohrmann J, Dorn A, Sander K, Gutzeit H (1986a) The extracellular electrical current pattern and its variability in vitellogenicDrosophila follicles. J Cell Sci 81:189–206

Bohrmann J, Huebner E, Sander K, Gutzeit H (1986b) Intracellular electrical potential measurements inDrosophila follicles. J Cell Sci 81:207–221

Browder LW, Pollock M, Nickells RW, Heikkila JJ, Winning RS (1989) Developmental regulation of the heat-shock response. In: Browder LW (ed) Developmental biology, vol 6. Plenum Press, New York, pp 97–147

Croghan PC, Lockwood APM (1960) The composition of the haemolymph of the larva ofDrosophila melanogaster. J Exp Biol 37:339–343

Diehl-Jones W, Huebner E (1989) Pattern and composition of ionic currents around ovarioles of the hemipteranRhodnius prolixus (Stahl). Biol Bull [Suppl] 176:86–90

Djamgoz MBA (1986) Electrophysiological aspects of metabolic pumping in insect muscle. Comp Biochem Physiol A 84:207–215

Ellory IC, Hall AC, Stewart GW (1985) Volume-sensitive passive potassium fluxes in red cells. In: Gilles R, Gilles-Baillien M (eds) Transport processes, iono- and osmoregulation. Springer, Berlin Heidelberg New York, pp 401–423

Gutzeit HO (1986) Transport of molecules and organelles in meroistic ovarioles of insects. Differentiation 31:155–165

Gutzeit HO, Koppa R (1982) Time-lapse film analysis of cytoplasmic streaming during late oogenesis ofDrosophila. J Embryol Exp Morphol 67:101–111

Harvey WR, Cioffi M, Dow JAT, Wolfersberger MG (1983) Potassium ion transport ATPase in insect epithelia. J Exp Biol 106:91–117

Hay B, Jan LY, Jan YN (1988) A protein component ofDrosophila polar granules is encoded byvasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55:577–587

Heukeshoven J, Dernick R (1988) Improved silver staining procedure for fast staining in PhastSystem Development Unit: I. Staining of sodium dodecyl sulfate gels. Electrophoresis 9:28–32

Hille B (1984) Ionic channels of excitable membranes. Sinauer, Sunderland

Jaffe JF, Woodruff RI (1979) Large electrical currents traverse developing cecropia follicles. Proc Natl Acad Sci USA 76:1328–1332

Jungreis AM, Jatlow P, Wyatt GR (1973) Inorganic ion composition of haemolymph of the cecropia silkmoth: changes with diet and ontogeny. J Insect Physiol 19:225–233

King RC (1970) Ovarian development inDrosophila melanogaster. Academic Press, New York

Lebovitz RM, Takeyasu K, Fambrough DM (1989) Molecular characterization and expression of the (Na++K+)-ATPase alpha-subunit inDrosophila melanogaster. EMBO J 8:193–202

Mahowald AP, Kambysellis MP (1980) Oogenesis. In: Ashburner M, Wright TRF (eds) Genetics and biology ofDrosophila, vol 2d. Academic Press, New York, pp 141–224

Mahowald AP, Goralski TJ, Caulton JH (1983) In vitro activation ofDrosophila eggs. Dev Biol 98:437–445

Margaritis LH (1985) Structure and physiology of the eggshell. In: Kerkut GA, Gilbert LJ (eds) Comprehensive insect physiology, vol 1. Pergamon Press, Oxford, pp 153–230

Martin P, Schneider I (1978)Drosophila organ culture. In: Ashburner M, Wright TRF (eds) Genetics and biology ofDrosophila, vol 2a. Academic Press, New York, pp 219–264

Miyazaki S, Hagiwara S (1976) Electrical properties of theDrosophila egg membrane. Dev Biol 53:91–100

O'Donnell MJ (1988) Potassium channel blockers unmask electrical excitability of insect follicles. J Exp Zool 245:137–143

Overall R, Jaffe LF (1985) Patterns of ionic current throughDrosophila follicles and eggs. Dev Biol 108:102–119

Petri WH, Wyman AR, Henikoff S (1977) Synthesis of “heat shock” mRNA byDrosophila melanogaster follicle cells under standard organ culture conditions. Drosophila Information Service 52:80

Petri WH, Mindrinos MN, Lombard MF, Margaritis LH (1979) In vitro development of theDrosophila chorion in a chemically defined organ culture medium. Rouxs Arch Dev Biol 186:351–362

Post RL, Hegyvary C, Kume S (1972) Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem 247:6530–6540

Robb JA (1969) Maintenance of imaginal discs ofDrosophila melanogaster in chemically defined media. J Cell Biol 41:876–885

Sander K, Lehmann R (1988)Drosophila nurse cells produce a posterior signal required for embryonic segmentation and polarity. Nature 335:68–70

Schoffeniels E (1964) Cellular aspects of active transport. In: Florkin M, Manson HS (eds) Comparative biochemistry, vol VII. Academic Press, New York

Spradling AC, Mahowald AP (1979) Identification and genetic localization of mRNAs from ovarian follicle cells ofDrosophila melanogaster. Cell 16:589–598

St. Johnston D, Driever W, Berleth T, Richstein S, Nüsslein-Volhard C (1989) Multiple steps in the localization ofbicoid mRNA to the anterior pole of theDrosophila oocyte. Development [Suppl]:13–19

Sun YA, Wyman RJ (1987) Lack of an oocyte to nurse cell voltage difference inDrosophila. Neuroscience 13:1139

Sun YA, Wyman RJ (1989) TheDrosophila egg chamber: external ionic currents and the hypothesis of electrophoretic transport. Biol Bull [Suppl] 176:79–85

Takeyasu K, Tamkun MM, Renaud KJ, Fambrough DM (1988) Ouabain-sensitive (Na++K+)-ATPase activity expressed in mouse L cells by transfection with DNA encoding theα-subunit of an avian sodium pump. J Biol Chem 263:4347–4354

Van der Meer JM, Jaffe LF (1983) Elemental composition of the perivitelline fluid in earlyDrosophila embryos. Dev Biol 95:249–252

Verachtert B, De Loof A (1988) Experimental reversal of the electric field around vitellogenic follicles ofSarcophaga bullata. Comp Biochem Physiol A 90:253–256

Verachtert B, De Loof A (1989) Intra- and extracellular electrical fields of vitellogenic polytrophic follicles. Biol Bull [Suppl] 176:91–95

Verachtert B, Amelinckx M, De Loof A (1989) Potassium and chloride dependence of the membrane potential of vitellogenic follicles ofSarcophaga bullata (Diptera). J Insect Physiol 35:143–148

Woodruff RI (1989) Charge-dependent molecular movement through intercellular bridges inDrosophila follicles. Biol Bull [Suppl] 176:71–78

Woodruff RI, Telfer WH (1973) Polarized intercellular bridges in ovarian follicles of the cecropia moth. J Cell Biol 58:172–188

Woodruff RI, Telfer WH (1974) Electrical properties of ovarian cells linked by intercellular bridges. Ann NY Acad Sci 238:408–419

Woodruff RI, Telfer WH (1980) Electrophoresis of proteins in intercellular bridges. Nature 286:84–86

Woodruff RI, Huebner E, Telfer WH (1986) Ion currents inHyalophora ovaries: the role of the epithelium and the intercellular spaces of the trophic cap. Dev Biol 117:405–416

Woodruff RI, Kulp JH, La Gaccia ED (1988) Electrical mediated protein movement inDrosophila follicles. Rouxs Arch Dev Biol 197:231–238

Zimmerman JL, Petri W, Meselson M (1983) Accumulation of a specific subset ofDrosophila melanogaster heat shock mRNAs in normal development without heat shock. Cell 32:1161–1170