In-vitro antifungal activities of silver-copper complex/chitosan (Ag-Cu@CS) nanoparticles synthesized by in-situ encapsulation

Vietnam Journal of Catalysis and Adsorption - Tập 10 Số 1S - Trang 24-30 - 2021
Le The Tam1, Nguyen Hoa Du1, Le Dang Quang2, Ho Dinh Quang1, Phan Thi Hong Tuyet1, Chu Thi Thuy Dung1, Tran Thi Ngan1, Le Thi Thu Hiep1, Tran Quang De3
2Vietnam Institute of Industry Chemistry

Tóm tắt

In this study, silver-copper complex/chitosan (Ag-Cu@CS) nanoparticles were successfully synthesized by in-situ encapsulation reduction method. The results show that as-synthesized nanoparticles were quasi spherical in shape with the average diameter of 7.97 nm, well-dispersed particles in water and stable. The test phytopathogenic fungi Sclerotium rolfsii, Magnaporthe oryzae K, Botrytis cinerea, and Colletotrichum gloeospodises were isolated from diseased fruits of Vinh orange trees, which was cultivated in Nghe An province. The obtained Ag-Cu@CS product have strong inhibition agaisnt four fungi in-vitro. The inhibitory effect of silver-copper complex/chitosan (Ag-Cu@CS) nanoparticles at concentrations of 25 ppm was reached over 50% on Sclerotium rolfsii, Magnaporthe oryzae, and Botrytis cinerea at a concentration of 50 ppm, the inhibitory effect of the nanoparticles on Colletotrichum gloeospodises reached over 50% after 4 days of culture. These results suggested that silver-copper complex/chitosan (Ag-Cu@CS) nanoparticles can be used as a promising fungicide for plant protection.

Từ khóa

#silver-copper complex/chitosan #in-situ encapsulation #plant protection

Tài liệu tham khảo

S. F. Sabira, A. M. Kasabe, P. C. Mane, R. D. Chaudhari, P. V. Adhyapak, Nanotechnology 31(48) (2020) 485705. https://doi.org/10.1088/1361-6528/ab9da5.

V. Saharan, G. Sharma, M. Yadav, M. K. Choudhary, S.S. Sharma, A. Pal, R. Raliya, P. Biswas , Int. J. Biol. Macromol 75 (2015) 346-353. https://doi.org/10.1016/j.ijbiomac.2015. 01.027

S. C. De La Rosa-García, P. Martínez-Torres, S. Gómez-Cornelio, M. A. Corral-Aguado, P. Quintana, Nikte M. Gómez-Ortíz, J. Nanomaterials 2018 (2018) 3498527. https://doi.org/10.1155/2018/3498527

E. Ibrahim, J. Luo, T. Ahmed, W. Wu, C. Yan, B. Li, J. Fungi 6 (4) (2020) 1-13. https://doi.org/10.3390/jof6040294

Y. K. Jo, B. H. Kim, G. Jung, Plant Disease 93(10) (2009) 1037-1043. https://doi.org/10.1094/PDIS-93-10-1037

K. A. Abd-Elsalam, Fungal Genomics Biol 2(2) (2012) 1-2. https://doi.org/10.4172/2165-8056.1000e107

P. Kanhed, S. Birla, S. Gaikwad, A. Gade, A. B. Seabra, O. Rubilar, N. Duran, M. Rai, Materials Letters 115 (2014) 13-17. https://doi.org/10.1016/j.matlet.2013.10.011

S. M. Ouda, Research Journal of Microbiology 9(1) (2014) 34-42. https://doi.org/10.3923/jm.2014.34.42

D. Wei, W. Qian, Colloids Surfaces B: Biointerfaces 62(1) (2008) 136-142. https://doi.org/10.1016/j.colsurfb.2007.09. 030

D. K. Bhui, H. Bar, P. Sarkar, G. P. Sahoo, S. P. De, A. Misra, Journal of Molecular Liquids 145(1) (2009) 33-37. https://doi.org/10.1016/j.molliq.2008.11.014

H. Wang, X. Qiao, J. Chen, X. Wang, S. Ding, Materials Chemistry and Physics 94 (2-3) (2005) 449-453. https://doi.org/10.1016/j.matchemphys.2005.05.005