In vitro activity of the new water-dispersible Fe3O4@usnic acid nanostructure against planktonic and sessile bacterial cells

Springer Science and Business Media LLC - Tập 15 - Trang 1-10 - 2013
Alexandru Mihai Grumezescu1, Ani Ioana Cotar2, Ecaterina Andronescu1, Anton Ficai1, Cristina Daniela Ghitulica1, Valentina Grumezescu1,3, Bogdan Stefan Vasile1, Mariana Carmen Chifiriuc2
1Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest, Romania
2Department of Microbiology Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
3Laser-Surface-Plasma Interactions Laboratory, Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Institute of Atomic Physics, Bucharest, Romania

Tóm tắt

A new water-dispersible nanostructure based on magnetite (Fe3O4) and usnic acid (UA) was prepared in a well-shaped spherical form by a precipitation method. Nanoparticles were well individualized and homogeneous in size. The presence of Fe3O4@UA was confirmed by transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction. The UA was entrapped in the magnetic nanoparticles during preparation and the amount of entrapped UA was estimated by thermogravimetric analysis. Fabricated nanostructures were tested on planktonic cells growth (minimal inhibitory concentration assay) and biofilm development on Gram-positive Staphylococcus aureus (S. aureus), Enterococcus faecalis (E. faecalis) and Gram-negative Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) reference strains. Concerning the influence of Fe3O4@UA on the planktonic bacterial cells, the functionalized magnetic nanoparticles exhibited a significantly improved antimicrobial activity against E. faecalis and E. coli, as compared with the Fe3O4 control. The UA incorporated into the magnetic nanoparticles exhibited a very significant inhibitory effect on the biofilm formed by the S. aureus and E. faecalis, on a wide range of concentrations, while in case of the Gram-negative microbial strains, the UA-loaded nanoparticles inhibited the E. coli biofilm development, only at high concentrations, while for P. aeruginosa biofilms, no inhibitory effect was observed. The obtained results demonstrate that the new water-dispersible Fe3O4@UA nanosystem, combining the advantages of the intrinsic antimicrobial features of the UA with the higher surface to volume ratio provided by the magnetic nanocarrier dispersible in water, exhibits efficient antimicrobial activity against planktonic and adherent cells, especially on Gram-positive strains.

Tài liệu tham khảo

Alphandéry E, Guyot F, Chebbi I (2012) Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int J Pharm 434(1–2):444–452 Andhariya N, Upadhyay R, Mehta R, Chudasama B (2013) Folic acid conjugated magnetic drug delivery system for controlled release of doxorubicin. J Nanopart Res 15:1416 Andronescu E, Grumezescu AM, Ficai A, Gheorghe I, Chifiriuc M, Mihaiescu DE, Lazar V (2012) In vitro efficacy of antibiotic magnetic dextran microspheres complexes against Staphylococcus aureus and Pseudomonas aeruginosa strains Biointerface Res Appl Chem 2(3):332–338 Anghel I, Grumezescu AM, Andronescu E, Anghel AG, Ficai A, Saviuc C, Grumezescu V, Vasile BS, Chifiriuc MC (2012a) Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofilms development. Nanoscale Res Lett 7:501 Anghel I, Holban AM, Grumezescu AM, Andronescu E, Ficai A, Anghel AG, Maganu M, Lazar V, Chifiriuc MC (2012b) Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilms development. Nanoscale Res Lett 7:690 Baier J, Naumburg T, Blumenstein NJ, Jeurgens LPH, Welzel U, Do TA, Pleiss J, Bill J (2012) Bio-inspired mineralization of zinc oxide in presence of ZnO-binding peptides. Biointerface Res Appl Chem 2(4):380–391 Barreto ACH, Santiago VR, Mazzetto SE, Denardin JC, Lavın R, Mele G, Ribeiro MENP, Vieira IGP, Goncalves T, Ricardo MNPS, Fechine PBA (2011) Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy. J Nanopart Res 13:6545–6553 Chen S, Li Y, Guo C, Wang J, Ma JH, Liang XF, Yang LR, Liu HZ (2007) Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir 23:12669–12676 Chifiriuc MC, Diţu LM, Oprea E, Liţescu S, Bucur M, Măruţescu L, Enache G, Saviuc C, Burlibaşa M, Trăistaru T, Tănăse G, Lazăr V (2009) In vitro study of the inhibitory activity of usnic acid on dental plaque biofilm. Roum Arch Microbiol Immunol 68(4):215–222 Cornell RM, Schwertmann U (2003) The iron oxides, structure, properties, reactions, occurrences and uses, 2nd edn. Wiley, Weinheim Dhanasingh S, Mallesha J, Hiriyannaiah J (2011) Preparation, characterization and antimicrobial studies of chitosan/silica hybrid polymer. Biointerface Res Appl Chem 1(2):048–056 Edwards HGM, Newton EM, Wynn-Williams DD (2003) Molecular structural studies of lichen substances II: atranorin, gyrophoric acid, fumarprotocetraric acid, rhizocarpic acid, calycin, pulvinic dilactone and usnic acid. J Mol Struct 651–653:27–37 Fang JM, Li SH, Gong WQ, Sun ZY, Yang HG (2009) FTIR study of adsorption of PCP on hematite surface. Guang Pu Xue Yu Guang Pu Fen Xi. 29(2):318–321 Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365 Frimpong RA, Hilt JZ (2008) Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization. Nanotechnology 19:175101–175107 Ghione M, Parrello D, Grasso L (1988) Usnic acid revisited, its activity on oral flora. Chemoterapia 7:302–305 Grumezescu AM, Saviuc C, Holban A, Hristu R, Croitoru C, Stanciu G, Chifiriuc C, Mihaiescu D, Balaure P, Lazar V (2011a) Chem magnetic chitosan for drug targeting and in vitro drug delivery response. Biointerface Res Appl 1(5):160–165 Grumezescu AM, Saviuc C, Chifiriuc MC, Hristu R, Mihaiescu DE, Balaure P, Stanciu G, Lazar V (2011b) Inhibitory activity of Fe3O4/oleic acid/usnic acid-core/shell/extra-shell nanofluid on S. aureus biofilm development (2011). IEEE T Nanobiosci 10(4):269–274 Grumezescu AM, Andronescu E, Ficai A, Mihaiescu DE, Vasile BS, Bleotu C (2012a) Syntehsis, characterization and biological evaluation of Fe3O4/C12 core/shell nanosystem. Lett Appl NanoBioSci 1(2):31–35 Grumezescu AM, Chifiriuc MC, Saviuc C, Grumezescu V, Hristu R, Mihaiescu DE, Stanciu GA, Andronescu E (2012b) Hybrid nanomaterial for stabilizing the antibiofilm activity of eugenia carryophyllata essential oil. IEEE T Nanobiosci 11(4):360–365 Grumezescu AM, Andronescu E, Ficai A, Bleotu C, Mihaiescu DE, Chifiriuc MC (2012c) Synthesis, characterization and in vitro assessment of the magnetic chitosan–carboxymethylcellulose biocomposite interactions with the prokaryotic and eukaryotic cells. Int J Pharm 436(1–2):771–777 Grumezescu AM, Andronescu E, Ficai E, Yang CH, Huang KS, Vasile BS, Voicu G, Mihaiescu DE, Bleotu C (2012d) Magnetic nanofluid with antitumoral properties. Lett Appl NanoBioSci 1(3):56–60 Grumezescu AM, Holban AM, Andronescu E, Ficai A, Bleotu C, Chifiriuc MC (2012e) Microbiological applications of a new water dispersible magnetic nanobiocomposite. Lett Appl NanoBioSci 4:83–90 Grumezescu AM, Holban AM, Andronescu E, Ficai A, Bleotu C, Chifiriuc MC (2012f) Water dispersible metal oxide nanobiocomposite as a potentiator of the antimicrobial activity of kanamycin. Lett Appl NanoBioSci 1(4):77–82 Grumezescu AM, Andronescu E, Ficai A, Ficai D, Huang KS, Gheorghe I, Chifiriuc MC (2012g) Water soluble magnetic biocomposite with potential applications for the antimicrobial therapy. Biointerface Res Appl Chem 2(6):469–475 Guan N, Xu J, Wang L, Sun D (2009) One-step synthesis of amine-functionalized thermo-responsive magnetite nanoparticles and single-crystal hollow structures. Colloid Surf A: Physicochem Engineer Aspect 346(1–3):221–228 Gupta V, Verma S, Gupta S, Singh A, Pal A, Srivastava S, Srivastava P, Singh S, Darokar M (2012) Membrane-damaging potential of natural L-(−)-usnic acid in Staphylococcus aureus. Eur J Clin Microb Infect Dis 31(12):3375–3383 Gustafsson S, Fornara A, Petersson K, Johansson C, Muhammed M, Olsson E (2010) Evolution of structural and magnetic properties of magnetite nanoparticles for biomedical applications. Cryst Growth Des 10(5):2278 Jansch M, Stumpf P, Graf C, Rühl E, Müller RH (2012) Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharm 428(1–2):125–133 Jean M, Nachbaur V, Le Breton JM (2012) Synthesis and characterization of magnetite powders obtained by the solvothermal method: influence of the Fe 3 + concentration. J Alloys Compound 513:425–429 Kamruzzaman Selim KM, Ha YS, Kim SJ, Chang Y, Kim TJ, Lee GH, Kang IK (2007) Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. Biomaterials 28:710–716 Karmali RS, Bartakke A, Borker VP, Rane KS (2011) Bactericidal action of N doped ZnO in sunlight. Biointerface Res Appl Chem 1(2):057–063 Kipp JE (2004) The role of solid nanoparticle technology in the parenteral delivery of poorly watersoluble drugs. Int J Pharm 284:109 Lahonian M, Golneshan AA (2011) Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method. IEEE T Nanobiosci 10(4):262–268 Lauterwein M, Oethinger M, Belsner K, Peters T (1995) In vitro activities of the lichen secondary metabolites vulpinic acid, (+)-usnic acid and (Ð)-usnic acid against aerobic and anaerobic microoganisms. Antimicrob Agents Chemother 39:2541–2543 Mah T-FC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39 Martinez LR, Casadevall A (2005) Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect Immun 73:6350–6362 Masoudi A, Madaah Hosseini HR, Shokrgozar HA, Ahmadi R, Oghabian MA (2012a) The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Int J Pharm 433(1–2):129–141 Masoudi A, Madaah Hosseini HR, Morteza S, Reyhani S, Shokrgozar MS, Oghabian MA, Ahmadi R (2012b) Long-term investigation on the phase stability, magnetic behavior, toxicity, and MRI characteristics of superparamagnetic Fe/Fe-oxide core/shell nanoparticles. Int J Pharm 439(1–2):28–40 Mihaiescu DE, Grumezescu AM, Balaure PC, Mogosanu DE, Traistaru V (2011) Magnetic scaffold for drug targeting: evaluation of cephalosporins controlled release profile. Biointerface Res Appl Chem 1(5):191–195 Mihaiescu DE, Horja M, Gheorghe I, Ficai A, Grumezescu AM, Bleotu C, Chifiriuc MC (2012) Water soluble magnetite nanoparticles for antimicrobial drugs delivery. Lett Appl NanoBioSci 1(2):45–49 Paraje MG (2011) Antimicrobial resistance in biofilms. Science against microbial pathogens: communicating current research and technological advances A. Méndez-Vilas (Ed.), Formatex Park S, Kim HS, Kim WJ, Yoo HS (2012) Pluronic@Fe3O4 nanoparticles with robust incorporation of doxorubicin by thermo-responsiveness. Int J Pharm 424(1–2):107–114 Patel R (2005) Biofilms and antimicrobial resistance. Clin Orthop Relat Res 41–47 Perez-Artacho B, Gallardo V, Ruiz MA, Arias JL (2012) Maghemite/poly(D, L-lactide-co-glycolyde) composite nanoplatform for therapeutic applications. J Nanopart Res 14:768 Santos DP, Ruiz MA, Gallardo V, Valnice M, Zanoni B, Arias JL (2011) Multifunctional antitumor magnetite/chitosan-l-glutamic acid (core/shell) nanocomposites. J Nanopart Res 13:4311–4323 Santra S, Tapec R, Theodoropoulou N, Donson J, Hebard A, Tan WH (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion—The effect of nonionic surfactants. Langmuir 17:2900–2906 Saviuc C, Grumezescu AM, Chifiriuc MC, Bleotu C, Stanciu G, Hristu R, Mihaiescu D, Lazăr V (2011a) In vitro methods for the study of microbial biofilms. Biointerface Res Appl Chem 1(1):031–040 Saviuc C, Grumezescu AM, Holban A, Chifiriuc C, Mihaiescu D, Lazar V (2011b) Hybrid nanostructurated material for biomedical applications. Biointerface Res Appl Chem 1(2):064–071 Saviuc C, Grumezescu AM, Holban A, Bleotu C, Chifiriuc C, Balaure P, Lazar V (2011c) Phenotypical studies of raw and nanosystem embedded Eugenia carryophyllata buds essential oil antibacterial activity on Pseudomonas aeruginosa and Staphylococcus aureus strains. Biointerface Res Appl Chem 1(3):111–118 Smith AW (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 57:1539–1550 Sousa C, Botelho C, Oliveira R (2011) Nanotechnology applied to medical biofilms control science against microbial pathogens: communicating current research and technological advances. A Mendez-Vilas (Ed), Formatex, Madrid 878–888 Sun X, Ho D, Lacroix LM, Xiao JQ, Sun S (2012) Magnetic nanoparticles for magnetoresistance-based biodetection. IEEE T Nanobiosci 11(1):46–53 Szomolay B, Klapper I, Dockery J, Stewart PS (2005) Adaptive responses to antimicrobial agents in biofilms. Environ Microbiol 7:1186–1191 Tay T, Türk AO, Yılmaz M, Türk H, Kıvanc M (2004) Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-Usnic Acid, Norstictic Acid, and Protocetraric Acid Constituents. Z Naturforsch C 59(5–6):384–388