In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption

Dalton Transactions - Tập 43 Số 19 - Trang 7028 - 2014
Ying Yang1, Lei Ge1, Victor Rudolph1, Zhonghua Zhu1
1School of Chemical Engineering, The University of Queensland, Brisbane, 4072, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Li, 1999, Nature, 402, 276, 10.1038/46248

Janiak, 2010, New J. Chem., 34, 2366, 10.1039/c0nj00275e

Yaghi, 1995, Nature, 378, 703, 10.1038/378703a0

Qiu, 2009, Coord. Chem. Rev., 253, 2891, 10.1016/j.ccr.2009.07.020

Allendorf, 2011, Adv. Mater., 23, 249, 10.1002/adma.201002854

Stock, 2012, Chem. Rev., 112, 933, 10.1021/cr200304e

Chae, 2004, Nature, 427, 523, 10.1038/nature02311

Eddaoudi, 2001, Acc. Chem. Res., 34, 319, 10.1021/ar000034b

Eddaoudi, 2002, Science, 295, 469, 10.1126/science.1067208

Kaye, 2007, J. Am. Chem. Soc., 129, 14176, 10.1021/ja076877g

Petit, 2011, Adv. Funct. Mater., 21, 2108, 10.1002/adfm.201002517

Gorka, 2010, Chem. Commun., 46, 6798, 10.1039/c0cc01578d

Petit, 2009, J. Mater. Chem., 19, 6521, 10.1039/b908862h

Petit, 2010, Adv. Funct. Mater., 20, 111, 10.1002/adfm.200900880

Bandosz, 2011, Adsorption, 17, 5, 10.1007/s10450-010-9267-5

Petit, 2011, Carbon, 49, 563, 10.1016/j.carbon.2010.09.059

Petit, 2011, Langmuir, 27, 13043, 10.1021/la202924y

Petit, 2012, Dalton Trans., 41, 4027, 10.1039/c2dt12017h

Rowe, 2009, Biomacromolecules, 10, 983, 10.1021/bm900043e

O'Neill, 2010, J. Mater. Chem., 20, 5720, 10.1039/c0jm00515k

Thompson, 2012, Microporous Mesoporous Mater., 158, 292, 10.1016/j.micromeso.2012.03.052

Yang, 2009, Chem. Mater., 21, 1893, 10.1021/cm803502y

Xiang, 2011, Angew. Chem., Int. Ed., 50, 491, 10.1002/anie.201004537

Anbia, 2012, Chem. Eng. J., 191, 326, 10.1016/j.cej.2012.03.025

Han, 2008, Adv. Mater., 20, 3724, 10.1002/adma.200800239

Berson, 2007, Adv. Funct. Mater., 17, 3363, 10.1002/adfm.200700438

Chen, 2010, Phys. Status Solidi (B), 247, 2664, 10.1002/pssb.201000122

Park, 2006, Proc. Natl. Acad. Sci. U. S. A., 103, 10186, 10.1073/pnas.0602439103

Pan, 2012, J. Membr. Sci., 421–422, 292, 10.1016/j.memsci.2012.07.028

Kumar, 2013, Chem. Commun., 49, 4947, 10.1039/c3cc00136a

Dumee, 2013, J. Mater. Chem. A, 1, 9208, 10.1039/c3ta11483j

Yang, 2013, Int. J. Hydrogen Energy, 38, 229, 10.1016/j.ijhydene.2012.10.045

Cravillon, 2009, Chem. Mater., 21, 1410, 10.1021/cm900166h

Ge, 2012, J. Phys. Chem. C, 116, 13264, 10.1021/jp3035105

Vogels, 1998, J. Cryst. Growth, 191, 563, 10.1016/S0022-0248(98)00138-9

Huang, 2006, Angew. Chem., Int. Ed., 45, 1557, 10.1002/anie.200503778

Lan, 2005, J. Phys. Chem. B, 109, 16011, 10.1021/jp052031s

Yang, 2010, Int. J. Hydrogen Energy, 35, 13062, 10.1016/j.ijhydene.2010.04.066

Sumida, 2011, Chem. Rev., 112, 724, 10.1021/cr2003272

Yang, 2013, RSC Adv., 3, 17065, 10.1039/c3ra42519c

Liu, 2012, Chem. Commun., 48, 8814, 10.1039/c2cc34192a

Ge, 2013, J. Mater. Chem. A, 1, 6350, 10.1039/c3ta11131h

Pan, 2011, CrystEngComm, 13, 6937, 10.1039/c1ce05780d

Tanaka, 2013, Chem. Commun., 49, 7884, 10.1039/c3cc43028f

Kida, 2013, CrystEngComm, 15, 1794, 10.1039/c2ce26847g

Wu, 2012, J. Mater. Chem., 22, 16971, 10.1039/c2jm32570e

Hou, 2013, Dalton Trans., 42, 3653, 10.1039/c2dt31968c

Hou, 2011, Chem. Commun., 47, 5464, 10.1039/c1cc10990a

Zhang, 2013, AlChE J., 59, 2195, 10.1002/aic.13970

Ge, 2013, RSC Adv., 3, 25360, 10.1039/c3ra44250k

Li, 2011, Coord. Chem. Rev., 255, 1791, 10.1016/j.ccr.2011.02.012

Saha, 2010, Environ. Sci. Technol., 44, 1820, 10.1021/es9032309