Các phép đo ứng suất tại chỗ trong quá trình tăng trưởng trực tiếp GaN trên SiC bằng phương pháp MOCVD

Journal of Materials Research - Tập 30 - Trang 2900-2909 - 2015
Zakaria Y. Al Balushi1, Joan M. Redwing1,2
1Department of Materials Science and Engineering, The Pennsylvania State University, University Park, USA
2Materials Research Institute, The Pennsylvania State University, University Park, USA

Tóm tắt

Các phép đo độ cong tại chỗ được sử dụng để so sánh sự phát triển của ứng suất của các lớp màng GaN được trồng trực tiếp trên 6H-SiC thông qua phương pháp tăng trưởng nhiệt độ hai bước với các lớp màng được trồng với lớp đệm AlN. Quá trình tăng trưởng nhiệt độ hai bước bao gồm một lớp GaN ban đầu ở nhiệt độ thấp và một lớp GaN chính ở nhiệt độ cao. Đối với GaN được trồng trực tiếp trên 6H-SiC, lớp nhiệt độ cao bắt đầu quá trình tăng trưởng dưới tác động của ứng suất nén, sau đó chuyển sang ứng suất kéo. Các lớp màng được trồng trực tiếp trên 6H-SiC cho thấy sự giảm mật độ khiếm khuyết xoắn (TD) và cải thiện độ nhám bề mặt so với quá trình trồng trên lớp đệm AlN. Hơn nữa, kính hiển vi điện tử truyền qua của GaN được trồng trực tiếp trên 6H-SiC đã tiết lộ sự hiện diện chủ yếu của khiếm khuyết TD loại (a + c) cùng với các lỗi xếp chồng mặt phẳng cơ bản và các lỗi xếp chồng dạng trụ $\left\{{11\bar 20} \right\}$. Các vết nứt rãnh đã được quan sát thấy trong lớp màng GaN khi không sử dụng lớp đệm AlN. Điều này được cho là do ứng suất kéo do sự không khớp của hệ số giãn nở nhiệt gây ra.

Từ khóa

#GaN #6H-SiC #ứng suất nén #ứng suất kéo #khiếm khuyết xoắn #lớp đệm AlN #kính hiển vi điện tử truyền qua.

Tài liệu tham khảo

S. Araujo, M. Kazanbas, M. Wendt, T. Kleeb, and P. Zacharias: Prospects of GaN devices in automotive electrification. In Proceedings of the IEEE PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy, 2014; pp. 1–8. T. Kachi: GaN power devices for automotive applications. In IEEE Compound Semiconductor Integrated Circuit Symposium, 2007. (IEEE, 2007); pp. 1–4. T. Kachi: Recent progress of GaN power devices for automotive applications. Jpn. J. Appl. Phys. 53, 100210 (2014). Z.J. Shen and I. Omura: Power semiconductor devices for hybrid, electric, and fuel cell vehicles. Proc. IEEE 95, 778–789 (2007). P. Ning, Z. Liang, F. Wang, and L. Marlino: Power module and cooling system thermal performance evaluation for HEV application. In Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012. (IEEE, 2012); pp. 2134–2139. U.K. Mishra, P. Parikh, and Y.F. Wu: AlGaN/GaN HEMTs—An overview of device operation and applications. Proc. IEEE 90, 1022–1031 (2002). S.C. Binari, P.B. Klein, and T.E. Kazior: Trapping effects in GaN and SiC microwave FETs. Proc. IEEE 90, 1048–1058 (2002). I. Daumiller, D. Theron, C. Gaquiere, A. Vescan, R. Dietrich, A. Wieszt, H. Leier, R. Vetury, U.K. Mishra, I.P. Smorchkova, S. Keller, C. Nguyen, and E. Kohn: Current instabilities in GaN-based devices. IEEE Electron Device Lett. 22, 62–64 (2001). M. Su, C. Chen, L. Chen, M. Esposto, and S. Rajan: Challenges in the automotive application of GaN power switching devices. In International Conference on Compound Semiconductor Manufacturing Technology (CS MANTECH 2012) 27, 2012. S. Chowdhury, B.L. Swenson, M.H. Wong, and U.K. Mishra: Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 28, 74014 (2013). T. Uesugi and T. Kachi: Which are the future GaN power devices for automotive applications, lateral structures or vertical structures? In Proceeding of CSMantech. (CS MANTECH, 2011); p. 307. T. Oka, Y. Ueno, T. Ina, and K. Hasegawa: Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV. Appl. Phys. Express 7, 021002 (2014). M. Kanechika, M. Sugimoto, N. Soejima, H. Ueda, O. Ishiguro, M. Kodama, E. Hayashi, K. Itoh, T. Uesugi, and T. Kachi: A vertical insulated gate AlGaN/GaN heterojunction field-effect transistor. Jpn. J. Appl. Phys. 46, L503 (2007). Y.F. Wu, A. Saxler, M. Moore, R.P. Smith, S. Sheppard, P.M. Chavarkar, T. Wisleder, U.K. Mishra, and P. Parikh: 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 25, 117–119 (2004). Y.F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, and U.K. Mishra: Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48, 586–590 (2001). P.G. Neudeck, R.S. Okojie, and L.Y. Chen: High-temperature electronics—A role for wide bandgap semiconductors?Proc. IEEE 90, 1065–1076 (2002). R.F. Davis, T.W. Weeks, Jr., M.D. Bremser, S. Tanaka, R.S. Kern, Z. Sitar, K.S. Ailey, W.G. Perry, and C. Wang: Issues and examples regarding growth of AlN, GaN and AlxGa1−xN thin films via OMVPE and gas source MBE. MRS Online Proc. Libr. 395, 3–13 (1995). H. Lahrèche, M. Leroux, M. Laügt, M. Vaille, B. Beaumont, and P. Gibart: Buffer free direct growth of GaN on 6H–SiC by metalorganic vapor phase epitaxy. J. Appl. Phys. 87, 577 (2000). M-A. Di Forte-Poisson, A. Romann, M. Tordjman, M. Magis, J. Di Persio, C. Jacques, and P. Vicente: LPMOCVD growth of GaN on silicon carbide. J. Cryst. Growth 248, 533–536 (2003). J. Kyeong Jeong, J-H. Choi, H. Jin Kim, H-C. Seo, H. Jin Kim, E. Yoon, C.S. Hwang, and H.J. Kim: Buffer-layer-free growth of high-quality epitaxial GaN films on 4H-SiC substrate by metal-organic chemical vapor deposition. J. Cryst. Growth 276, 407–414 (2005). M. Losurdo, M.M. Giangregorio, G. Bruno, T-H. Kim, S. Choi, and A. Brown: Buffer free MOCVD growth of GaN on 4H-SiC: Effect of substrate treatments and UV-photoirradiation. Phys. Status Solidi 203, 1607–1611 (2006). J.A. Floro, E. Chason, and S.R. Lee: Real time measurement of epilayer strain using a simplified wafer curvature technique. MRS Online Proc. Libr. 406, 491–496 (1995). G.G. Stoney: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A 82, 172–175 (1909). D.D. Koleske, A.J. Fischer, A.A. Allerman, C.C. Mitchell, K.C. Cross, S.R. Kurtz, J.J. Figiel, K.W. Fullmer, and W.G. Breiland: Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence. Appl. Phys. Lett. 81, 1940 (2002). D.D. Koleske, M.E. Coltrin, K.C. Cross, C.C. Mitchell, and A.A. Allerman: Understanding GaN nucleation layer evolution on sapphire. J. Cryst. Growth 273, 86–99 (2004). R.C. Cammarata, T.M. Trimble, and D.J. Srolovitz: Surface stress model for intrinsic stresses in thin films. J. Mater. Res. 15, 2468–2474 (2000). R.C. Cammarata: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994). J.D. Acord, S. Raghavan, D.W. Snyder, and J.M. Redwing: In situ stress measurements during MOCVD growth of AlGaN on SiC. J. Cryst. Growth 272, 305–311 (2004). A.E. Romanov and J.S. Speck: Stress relaxation in mismatched layers due to threading dislocation inclination. Appl. Phys. Lett. 83, 2569 (2003). E. Chason, B.W. Sheldon, L.B. Freund, J.A. Floro, and S.J. Hearne: Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 156103 (2002). F. Spaepen: Interfaces and stresses in thin films. Acta Mater. 48, 31–42 (2000). W.D. Nix and B.M. Clemens: Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 14, 3467–3473 (1999). A. Krost, A. Dadgar, J. Bläsing, A. Diez, T.C. Hempel, S. Petzold, J. Christen, and R. Clos: Evolution of stress in GaN heteroepitaxy on AlN/Si(111): From hydrostatic compressive to biaxial tensile. Appl. Phys. Lett. 85, 3441–3443 (2004). S. Raghavan and J.M. Redwing: Growth stresses and cracking in GaN films on (111) Si grown by metal-organic chemical-vapor deposition. I. AlN buffer layers. J. Appl. Phys. 98, 23514 (2005). R. Abermann: Measurements of the intrinsic stress in thin metal films. Vacuum 41, 1279–1282 (1990). R. Koch: The intrinsic stress of polycrystalline and epitaxial thin metal films. J. Phys.: Condens. Matter 6, 9519 (1994). H. Harima: Properties of GaN and related compounds studied by means of Raman scattering. J. Phys.: Condens. Matter 14, R967 (2002). P. Perlin, C. Jauberthie-Carillon, J.P. Itie, A. San Miguel, I.I. Grzegory, and A. Polian: Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 45, 83–89 (1992). C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J.W. Ager, III, E. Jones, Z. Liliental-Weber, M. Rubin, E.R. Weber, M.D. Bremser, and R.F. Davis: Strain-related phenomena in GaN thin films. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 17745–17753 (1996). Z. Ren, Q. Sun, S-Y. Kwon, J. Han, K. Davitt, Y.K. Song, A.V. Nurmikko, H-K. Cho, W. Liu, J.A. Smart, and L.J. Schowalter: Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Appl. Phys. Lett. 91, 051116 (2007). D. Won, X. Weng, Z. Al Balushi, and J.M. Redwing: Influence of growth stress on the surface morphology of N-polar GaN films grown on vicinal C-face SiC substrates. Appl. Phys. Lett. 103, 241908 (2013). M.A. Moram and M.E. Vickers: X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72, 36502 (2009). V. Srikant, J.S. Speck, and D.R. Clarke: Mosaic structure in epitaxial thin films having large lattice mismatch. J. Appl. Phys. 82, 4286 (1997). P. Gay, P.B. Hirsch, and A. Kelly: The estimation of dislocation densities in metals from X-ray data. Acta Metall. 1, 315–319 (1953). P. Vermaut, P. Ruterana, G. Nouet, A. Salvador, and H. Morkoç: Prismatic defects in GaN grown on 6H-SiC by molecular beam epitaxy. Mater. Sci. Eng., B 43, 279–282 (1997).