In situ reductive dissolution to remove Iodine-129 from aquifer sediments

Journal of Environmental Radioactivity - Tập 216 - Trang 106182 - 2020
Jim E. Szecsody1, Hilary P. Emerson1, Carolyn I. Pearce1, Brandy N. Gartman1, C. Tom Resch2, Silvina A. Di Pietro3
1Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
2Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
3Applied Research Center, Florida International University, 10555 W. Flagler St., Miami, FL 33174, USA

Tài liệu tham khảo

Chao, 1983, Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments, Soil Sci. Soc. Am. J., 47, 225, 10.2136/sssaj1983.03615995004700020010x Corbin, 2005 Delegard, 2019 Doe-Em, 2009 Emerson, 2014, Geochemical controls of iodine uptake and transport in Savannah River Site subsurface sediments, Appl. Geochem., 45, 105, 10.1016/j.apgeochem.2014.03.002 Fruchter, 1997, Creation of a subsurface permeable treatment barrier using in situ redox manipulation, 704 Fuge, 1998, Geochemical barriers and the distribution of iodine in the secondary environment: implications for radio-iodine, 163 Fuhrmann, 1998, Sorption of iodine on minerals investigated by X-ray absorption near edge structure (XANES) and 125I tracer sorption experiments, Appl. Geochem., 13, 127, 10.1016/S0883-2927(97)00068-1 Heron, 1994, Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques, Environ. Sci. Technol., 28, 1698, 10.1021/es00058a023 Hu, 2009, 93 Hu, 2005, Sorption and transport of iodine species in sediments from the Savannah River and Hanford sites, J. Contam. Hydrol., 78, 185, 10.1016/j.jconhyd.2005.05.007 Kaplan, 2014, Radioiodine biogeochemistry and prevalence in groundwater, Crit. Rev. Environ. Sci. Technol., 44, 2287, 10.1080/10643389.2013.828273 Kaplan, 2000, Iodide sorption to subsurface sediments and illitic minerals, Environ. Sci. Technol., 34, 399, 10.1021/es990220g Kohler, 2004, Methods for estimating adsorbed uranium(VI) and distribution coefficients of contaminated sediments, Environ. Sci. Technol., 38, 240, 10.1021/es0341236 Larner, 2006, Comparative study of optimised BCR sequential extraction scheme and acid leaching of elements in the certified reference material NIST 2711, Anal. Chim. Acta, 556, 444, 10.1016/j.aca.2005.09.058 Lee, 2017 Mossop, 2003, Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments, Anal. Chim. Acta, 478, 111, 10.1016/S0003-2670(02)01485-X Neeway, 2019, Radioiodine attenuation pathways at two contrasting DOE sites: implications for remediation of contaminated sites across the globe, Sci. Total Environ., 691, 466, 10.1016/j.scitotenv.2019.07.146 Otosaka, 2011, Factors controlling mobility of I-127 and I-129 species in an acidic groundwater plume at the Savannah River Site, Sci. Total Environ., 409, 3857, 10.1016/j.scitotenv.2011.05.018 Qafoku, 2018 Qafoku, 2008, Interactions of aqueous U(VI) with soil minerals in slightly alkaline natural systems, Rev. Environ. Sci. Biotechnol., 7, 355, 10.1007/s11157-008-9137-8 Ravel, 2005, Athena, Artemis, Hephaestus: data analysis for x-ray absorption spectrosocopy using IFEFFIT, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719 Schwehr, 2009, Organo-iodine formation in soils and aquifer sediments at ambient concentrations, Environ. Sci. Technol., 43, 7258, 10.1021/es900795k Shetaya, 2012, Iodine dynamics in soils, Geochem. Cosmochim. Acta, 77, 457, 10.1016/j.gca.2011.10.034 Sparks, 1996 Strickert, 1980, Sorption of technetium and iodine radioisotopes by various minerals, Nucl. Technol., 49, 10.13182/NT80-A32488 Stucki, 1984, Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites, Clay Clay Miner., 32, 350, 10.1346/CCMN.1984.0320502 Sutherland, 2002, Determination of Al, Cu, Fe, Mn, Pb and Zn in certified reference materials using the optimized BCR sequential extraction procedure, Anal. Chim. Acta, 454, 249, 10.1016/S0003-2670(01)01553-7 Szecsody, 2001 Szecsody, 2004, In situ chemical reduction of aquifer sediments: enhancement of reactive iron phases and TCE dechlorination, Environ. Sci. Technol., 38, 4656, 10.1021/es034756k Szecsody, 2017 Szecsody, 2018 Szecsody, 2010 Truex, 2017, vol. 1 Vermeul, 2003, Creation of a subsurface permeable reactive barrier using in situ redox manipulation, 163 Wang, 2019, Time-dependent iodate and iodide adsorption to Fe oxides, Environ. Sci. Technol. Lett., 3, 2415 Whitehead, 1984, The distribution and transformations of iodine in the environment, Environ. Int., 10, 321, 10.1016/0160-4120(84)90139-9 Xu, 2015, Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site, J. Environ. Radioact., 139, 43, 10.1016/j.jenvrad.2014.09.012 Zachara, 2007 Zachara, 2007, Geochemical processes controlling migration of tank wastes in Hanford's vadose zone, Vadose Zone J., 6, 985, 10.2136/vzj2006.0180 Zhang, 2013, Iodine-129 and Iodine-127 speciation in groundwater at the Hanford site, US: iodate incorporation into calcite, Environ. Sci. Technol., 47, 9635, 10.1021/es401816e