In situ preparation of graphene oxide–CdTe nanocomposites with interesting optical properties
Tóm tắt
We report the in situ synthesis and interesting optical properties of graphene oxide–CdTe (GO–CdTe) nanocomposites, as well as their potential application in solar cells. By doping GO during the synthesis process of CdTe quantum dots (QDs), the as-prepared GO–CdTe nanocomposites have layered structure and CdTe QDs are well preserved on the layer with uniform distribution and no aggregation. The effects of different experimental conditions on the optical properties of GO–CdTe nanocomposite are investigated. Interestingly, the colors of GO–CdTe nanocomposite solutions under daylight are similar to their fluorescence color observed under ultraviolet (UV) light, distinct from those of pure CdTe QDs and GO/CdTe nanocomposites prepared by direct mixing of GO and CdTe QDs. In addition, we demonstrate the application of GO–CdTe nanocomposites for sensitized solar cells, which show enhanced photoelectric performance. Our findings may provide new insight into optical properties of QDs coupled with carbon nanomaterials.
Tài liệu tham khảo
C.R. Kagan, E. Lifshitz, E.H. Sargent, D.V. Talapin, Science 353, aac5523 (2016)
C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew Chem Int Edit 48, 7752–7777 (2009)
Y. Lin, H. Song, J.X. Zhang, H.S. Rao, Z.X. Pan, X.H. Zhong, J Mater Chem A 9, 997–1005 (2021)
J.Y. Peng, Q. Huang, Y.X. Liu, P.F. Liu, C.Z. Zhang, Sensor Actuat B-Chem 294, 157–165 (2019)
Y.F. Xu, M.Z. Yang, B.X. Chen, X.D. Wang, H.Y. Chen, D.B. Kuang, C.Y. Su, J Am Chem Soc 139, 5660–5663 (2017)
C. Song, H.Y. Luo, X.G. Lin, Z.J. Peng, L.D. Weng, X.S. Tang, S.B. Xu, M. Song, L.F. Jin, X.D. Zheng, Front Chem 8, 331 (2020)
D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat Nanotechnol 3, 101–105 (2008)
D.R. Dreyer, S. Murali, Y.W. Zhu, R.S. Ruoff, C.W. Bielawski, J Mater Chem 21, 3443–3447 (2011)
K.W. Putz, O.C. Compton, C. Segar, Z. An, S.T. Nguyen, L.C. Brinson, ACS Nano 5, 6601–6609 (2011)
S.B. Bon, L. Valentini, J.M. Kenny, Chem Phys Lett 494, 264–268 (2010)
Y. Wang, X. Chen, Z. Zhang, T. Li, X.H. Zhang, B.H. Xia, M.Q. Chen, T.X. Liu, W.F. Dong, Acs Appl Nano Mater 4, 9689–9696 (2021)
H.F. Dong, W.C. Gao, F. Yan, H.X. Ji, H.X. Ju, Anal Chem 82, 5511–5517 (2010)
Q. Chen, Y. Hu, C.G. Hu, H.H. Cheng, Z.P. Zhang, H.B. Shao, L.T. Qu, Phys Chem Chem Phys 16, 19307–19313 (2014)
R.T. Huang, L.J. Wang, Q. Zhang, Z.W. Chen, Z. Li, D.Y. Pan, B. Zhao, M.H. Wu, C.M.L. Wu, C.H. Shek, ACS Nano 9, 11351–11361 (2015)
W.L. Meng, X. Zhou, Z.L. Qiu, C.W. Liu, J.W. Chen, W.J. Yue, M.T. Wang, H. Bi, Carbon 96, 532–540 (2016)
C. Chen, L.J. Wang, Y.Y. Liu, Z.W. Chen, D.Y. Pan, Z. Li, Z. Jiao, P.F. Hu, C.H. Shek, C.M.L. Wu, J.K.L. Lai, M.H. Wu, Langmuir 29, 4111–4118 (2013)
Q.P. Luo, X.Y. Yu, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, J Phys Chem C 116, 8111–8117 (2012)
A.Z. Pan, M.J. Jurow, F. Qiu, J. Yang, B.Y. Ren, J.J. Urban, L. He, Y. Liu, Nano Lett 17, 6759–6765 (2017)
Y. Zhang, G.H. Yuan, Y.Y. Huang, X. Zhao, Ind Eng Chem Res 58, 16565–16570 (2019)
G. Katsukis, J. Malig, C. Schulz-Drost, S. Leubner, N. Jux, D.M. Guldi, ACS Nano 6, 1915–1924 (2012)
Y. Zhang, X.J. She, C.F. Wang, S. Chen, Rsc Adv 6, 65443–65449 (2016)
S.Y. Yang, C.F. Wang, S. Chen, J Am Chem Soc 133, 8412–8415 (2011)
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806–4814 (2010)
Y.C. Kuo, Q. Wang, C. Ruengruglikit, H.L. Yu, Q.R. Huang, J Phys Chem C 112, 4818–4824 (2008)
K. Liang, E.M. Spiesz, D.T. Schmieden, A.W. Xu, A.S. Meyer, M.E. Aubin-Tam, ACS Nano 14, 14731–14739 (2020)
G.B. Markad, S. Battu, S. Kapoor, S.K. Haram, J Phys Chem C 117, 20944–20950 (2013)
Y. He, H.T. Lu, L.M. Sai, W.Y. Lai, Q.L. Fan, L.H. Wang, W. Huang, J Phys Chem B 110, 13352–13356 (2006)
H. Zhang, L.P. Wang, H.M. Xiong, L.H. Hu, B. Yang, W. Li, Adv Mater 15, 1712–1715 (2003)
J. Chu, X. Li, P. Xu, J Mater Chem 21, 11283–11287 (2011)
B.T. Zhang, K.X. Wang, R.H. Chang, X. Yi, Y.W. Zhang, S. Wang, J Phys Chem C 123, 24943–24948 (2019)
A.F. Zedan, S. Sappal, S. Moussa, M.S. Shall, J Phys Chem C 114, 19920–19927 (2010)
I.V. Lightcap, P.V. Kamat, J Am Chem Soc 134, 7109–7116 (2012)
S. Kaniyankandy, S. Rawalekar, H.N. Ghosh, J Phys Chem C 116, 16271–16275 (2012)
J. Yuan, Y.Q. Zhang, L.Y. Zhou, G.C. Zhang, H.L. Yip, T.K. Lau, X.H. Lu, C. Zhu, H.J. Peng, P.A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y.F. Li, Y.P. Zou, Joule 3, 1140–1151 (2019)
A. Al-Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J.A. Marquez, A.B.M. Vilches, E. Kasparavicius, J.A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jost, G. Matic, B. Rech, R. Schlatmann, M. Topic, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, Science 370, 1300–1309 (2020)
A. Wibowo, M.A. Marsudi, M.I. Amal, M.B. Ananda, R. Stephanie, H. Ardy, L.J. Diguna, Rsc Adv 10, 42838–42859 (2020)
R. Zhou, Q.F. Zhang, E. Uchaker, J.L. Lan, M. Yin, G.Z. Cao, J Mater Chem A 2, 2517–2525 (2014)
L.Y. Niu, Q.S. Zhang, J. Liu, J.S. Qian, X.F. Zhou, J Alloy Compd 656, 863–870 (2016)