Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chuẩn bị tại chỗ composite In2O3 pn heterojunction trang trí bởi các hạt nano CuO cho sự phát hiện photoelectrochemical của ornidazole
Tóm tắt
Báo cáo này trình bày quá trình tổng hợp thân thiện với môi trường của composite tiếp xúc pn oxit kim loại với khả năng hấp thụ ánh sáng khả kiến cao và khả năng theo dõi photoelectrochemical trên kháng sinh. Composite tiếp xúc không đồng nhất In2O3-CuO đã được chuẩn bị thành công bằng cách trang trí CuO lên In2O3 đã được chuẩn bị thông qua phương pháp hồi lưu đơn giản. Các nanorod kiểu dáng như In2O3-CuO pn heterojunction thu được thể hiện tính dẫn điện cao với độ ổn định tuyệt vời, thuận lợi cho việc phát hiện photoelectrochemical của ornidazole (ONZ) có vai trò trong độc tính thủy sinh. Đặc điểm quang học và độ ổn định quang của composite heterojunction In2O3-CuO đã được phân tích thông qua các nghiên cứu photocurrent và UV–visible. Cơ chế tín hiệu ONZ đã được đề xuất với các mức băng năng lượng thích hợp được xác định bởi phân tích Mott-Schottky. Composite heterojunction tối ưu In2O3-CuO có khả năng phát hiện ONZ trong khoảng 0,05–65,3 nM với giới hạn phát hiện là 0,0092 nM tại điện thế làm việc -0,45 V (so với Ag/AgCl). Tính khả thi thực tế của thiết bị cảm biến đã được thử nghiệm trên mẫu thịt gà, nước tiểu người và nước hồ chứa ONZ. Tỷ lệ phục hồi của các mẫu thực có trên 95% và kết quả thu được được so sánh với các phương pháp điện hóa.
Từ khóa
#tổng hợp thân thiện với môi trường #composite tiếp xúc pn #In2O3-CuO #phát hiện photoelectrochemical #ornidazole #độc tính thủy sinhTài liệu tham khảo
Hayati F, Isari AA, Anvaripour B, Fattahi M, Kakavandi B (2020) Ultrasound-assisted photocatalytic degradation of sulfadiazine using MgO@CNT heterojunction composite: effective factors, pathway and biodegradability studies. Chem Eng J 381:122636. https://doi.org/10.1016/j.cej.2019.122636
Venkatesh K, Rajakumaran R, Chen SM, Karuppiah C, Yang CC, Ramaraj SK, Ali MA, Al-Hemaid FMA, El-Shikh MS, Almunqedhi BMA (2021) A novel hybrid construction of MnMoO4 nanorods anchored graphene nanosheets; an efficient electrocatalyst for the picomolar detection of ecological pollutant ornidazole in water and urine samples. Chemosphere 273:129665. https://doi.org/10.1016/j.chemosphere.2021.129665
Samarin MM, Faridbod F, Ganjali MR (2019) A luminescence nanosensor for Ornidazole detection using graphene quantum dots entrapped in silica molecular imprinted polymer. Spectrochim Acta Part A 206:430–436. https://doi.org/10.1016/j.saa.2018.08.026
Xu M, Guo L, Wang Y, Wang Q, Hao L, Wang C, Wu Q, Wang Z (2021) Heterocyclic frameworks as efficient sorbents for solid phase extraction-high performance liquid chromatography analysis of nitroimidazoles in chicken meat. Microchem J 165:106096. https://doi.org/10.1016/j.microc.2021.106096
Zhao L, Li J, Li Y, Wang T, Jin X, Wang K, Rahman E, Xing Y, Ji B, Zhou F (2017) Preparation of monoclonal antibody and development of an indirect competitive enzyme-linked immunosorbent assay for ornidazole detection. Food Chem 229:439–444. https://doi.org/10.1016/j.foodchem.2017.02.100
Ali HM, El-Hashemy MA (2018) Analytical investigation of the influence of ornidazole on the native protein fluorescence. Spectrochim Acta Part A 201:178–184. https://doi.org/10.1016/j.saa.2018.05.003
Muthukutty B, Krishnapandi A, Chen SM (2020) The facile co-precipitation synthesis of strontium tungstate anchored on a boron nitride (SrWO4/BN) composite as a promising electrocatalyst for pharmaceutical drug analysis. New J Chem 44:2489. https://doi.org/10.1039/C9NJ05673D
Velmurugan S, Yang TCK, Chen SW, Chen JN (2021) Metal-organic frameworks derived ZnO-Co3O4 pn heterojunction photocatalyst for the photoelectrochemical detection of sufadiazine. J Environ Chem Eng 9:106169. https://doi.org/10.1016/j.jece.2021.106169
Batzill M (2011) Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ Sci 4:3275. https://doi.org/10.1039/C1EE01577J
Ge L, Hong Q, Li H, Liu CC, Li F (2019) Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv Funct Mater 29:1904000. https://doi.org/10.1002/adfm.201904000
Hou T, Zhang L, Sun X, Li F (2016) Biphasic photoelectrochemical sensing strategy based on in situ formation of CdS quantum dots for highly sensitive detection of acetylcholinesterase activity and inhibition. Biosens Bioelectron 75:359–436. https://doi.org/10.1016/j.bios.2015.08.063
Song X, Hou T, Lu F, Wang Y, Liu J, Li F (2020) Homogeneous photoelectrochemical biosensing via synergy of G-quadruplex/hemin catalyzed reactions and the inner filter effect. Chem Commun 56:181. https://doi.org/10.1039/C9CC09280C
Gu F, Nie R, Han D, Wang Z (2015) In2O3−Graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens Actuators B 219:94–99. https://doi.org/10.1016/j.snb.2015.04.119
Du N, Zhang H, Chen BD, Ma XY, Liu ZH, Wu JB, Yang DR (2007) Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv Mater 19:1641–1645. https://doi.org/10.1002/adma.200602128
Sun Y, Suematsu K, Watanabe K, Nishibori M, Hu J, Zhang W, Shimanoe K (2018) Determination of effective oxygen adsorption species for CO sensing based on electric properties of indium oxide. J Electrochem Soc 165:275–280. https://doi.org/10.1149/2.0591807jes
Kneer J, Knobelspies S, Bierer B, Wöllenstein J, Palzer S (2016) New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens Actuators B 222:625–631. https://doi.org/10.1016/j.snb.2015.08.071
Li X, Shao C, Lu D, Lu G, Li X, Liu Y (2017) Octahedral-like CuO/In2O3 mesocages with double-shell architectures: rational preparation and application in hydrogen sulfide detection. ACS Appl Mater Interfaces 9:44632–44640. https://doi.org/10.1021/acsami.7b15488
Niederberger M, Garnweitner G, Buha J, Polleux J, Ba J, Pinna N (2006) Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol Gel Sci Techn 40:259–266. https://doi.org/10.1007/s10971-006-6668-8
Hamd W, Kerlidou MC, Muller FG, Leyris A, Matheron M, Courtin E, Fontecave M, Sanchez C, Artero V, Robert CL (2013) Dye-sensitized nanostructured crystalline mesoporous tin-doped indium oxide films with tunable thickness for photoelectrochemical applications. J Mater Chem A 1:8217. https://doi.org/10.1039/C3TA10728K
Yi SS, Wang ZY, Li HM, Zafar Z, Zhang ZT, Zhang LY, Chen DL, Liu ZY, Yue XZ (2021) Coupling effects of indium oxide layer on hematite enabling efficient photoelectrochemical water splitting. Appl Catal B 283:119649. https://doi.org/10.1016/j.apcatb.2020.119649
Sun L, Zhuang Y, Yuan Y, Zhan W, Wang XJ, Han X, Zhao Y (2019) Nitrogen-doped carbon-coated CuO-In2O3 p–n heterojunction for remarkable photocatalytic hydrogen evolution. Adv Energy Mater 9:1902839. https://doi.org/10.1002/aenm.201902839
Akshatha S, Sreenivasa S, Parashuram L, Udayakumar V, Alharthi FA, Chakrapani Rao TMC, Kumar S (2021) Microwave assisted green synthesis of p-type Co3O4@mesoporous carbon spheres for simultaneous degradation of dyes and photocatalytic hydrogen evolution reaction. Mater Sci Semicond Process 121:105432. https://doi.org/10.1016/j.mssp.2020.105432
Ahmad J, Majid K, Dar MA (2018) Controlled synthesis of p-type NiO/n-type GO nanocomposite with enhanced photocatalytic activity and study of temperature effect on the photocatalytic activity of the nanocomposite. Appl Surf Sci 457:417–426. https://doi.org/10.1016/j.apsusc.2018.06.200
Singh KK, Senapati KK, Borgohain C, Sarma KC (2017) Newly developed Fe3O4–Cr2O3 magnetic nanocomposite for photocatalytic decomposition of 4-chlorophenol in water. J Environ Sci 52:333–340. https://doi.org/10.1016/j.jes.2015.01.035
Li S, Xie L, He M, Hu X, Luo G, Chen C, Zhu Z (2020) Metal-organic frameworks-derived bamboo-like CuO/In2O3 heterostructure for high-performance H2S gas sensor with low operating temperature. Sens Actuators B 310:127828. https://doi.org/10.1016/j.snb.2020.127828
Qamar MT, Aslam M, Rehan ZA, Soomro MT, Basahi JM, Ismail IMI, Almeelbi T, Hameed A (2017) The influence of p-type Mn3O4 nanostructures on the photocatalytic activity of ZnO for the removal of bromo and chlorophenol in natural sunlight exposure. Appl Catal B 201:105–118. https://doi.org/10.1016/j.apcatb.2016.08.004
Maekawa T, Tamaki J, Miura N, Yamazoe N (1991) Sensing behavior of CuO-loaded SnO2 element for H2S detection. Chem Lett 1991:575–578. https://doi.org/10.1246/cl.1991.575
Liang X, Kima TH, Yoon JW, Kwak CH, Lee JH (2015) Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating. Sens Actuators B 209:934–942. https://doi.org/10.1016/j.snb.2014.11.130
Zhao M, Wang X, Ning L, Jia J, Li X, Cao L (2011) Electrospun Cu-doped ZnO nanofibers for H2S sensing. Sens Actuators B 156:588–592. https://doi.org/10.1016/j.snb.2011.01.070
Choi S, Katoch A, Zhang J, Kim S (2013) Electrospun nanofibers of CuO–SnO2 nanocomposite as semiconductor gas sensors for H2S detection. Sens Actuators B 176:585–591. https://doi.org/10.1016/j.snb.2012.09.035
Gang Wang G, Qinghua Chen Q, Yongping Liu Y, Dong Ma D, Yanjun Xin Y, Xiaohan Ma X, Xinwang Zhang X (2018) In situ synthesis of graphene/WO3 co-decorated TiO2 nanotube array photoelectrodes with enhanced photocatalytic activity and degradation mechanism for dimethyl phthalate. Chem Eng J 337:322–332. https://doi.org/10.1016/j.cej.2017.12.058
Zhang J, Chen L, Yang K (2019) In situ synthesis of CuO nanoparticles decorated hierarchical Ce-metal-organic framework nanocomposite for an ultrasensitive non-enzymatic glucose sensor. Ionics 25:4447–4457. https://doi.org/10.1007/s11581-019-02996-5
Sui L, Yu T, Zhao D, Cheng X, Zhang X, Wang P, Xu Y, Gao S, Zhao H, Gao Y, Huo L (2020) In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S. J Hazard Mater 385:121570. https://doi.org/10.1016/j.jhazmat.2019.121570
Wu JX, He CT, Li GR, Zhang JP (2018) An inorganic-MOF-inorganic approach to ultrathin CuO decorated Cu–C hybrid nanorod arrays for an efficient oxygen evolution reaction. J Mater Chem A 6:19176. https://doi.org/10.1039/C8TA06069J
Singh J, Soni RK (2020) Controlled synthesis of CuO decorated defect enriched ZnO nanoflakes for improved sunlight-induced photocatalytic degradation of organic pollutants. Appl Surf Sci 521:146420. https://doi.org/10.1016/j.apsusc.2020.146420
Sun Y, Zhao Z, Suematsu K, Li P, Yu Z, Zhang W, Hu J, Shimanoe K (2020) Rapid and stable detection of carbon monoxide in changing humidity atmospheres using clustered In2O3/CuO nanospheres. ACS Sens 5:1040–1049. https://doi.org/10.1021/acssensors.9b02557
Wang H, Bo X, Zhou M, Guo L (2020) DUT-67 and tubular polypyrrole formed a cross-linked network for electrochemical detection of nitrofurazone and ornidazole. Anal Chim Acta 1109:1–8. https://doi.org/10.1016/j.aca.2020.03.002
Kesavan G, Vinothkumar V, Chen SM (2021) Sonochemical synthesis of copper vanadate nanoparticles for the highly selective voltammetric detection of antibiotic drug ornidazole. J Alloys Compd 867:159019. https://doi.org/10.1016/j.jallcom.2021.159019
Yang W, Wu X, Liu T, Wang T, Hou X (2018) A triazine-based conjugated microporous polymer composite for magnetic solid phase extraction of 5-nitroimidazoles coupled with UPLC-MS/MS for quantification. Analyst 143:5744. https://doi.org/10.1039/C8AN01600C
Nandy P, Mukherjee A, Pradhan C, Das S (2020) Radio-sensitizing effects of CuII and ZnII complexes of ornidazole: role of nitro radical anion. ACS Omega 40:25668–25676. https://doi.org/10.1021/acsomega.0c02811
Sahoo DP, Patnaik S, Rath D, Nanda B, Parida K (2016) Cu@CuO promoted g-C3N4/MCM-41: an efficient photocatalyst with tunable valence transition for visible light induced hydrogen generation. RSC Adv 6:112602. https://doi.org/10.1039/C6RA24358D