In situ polymerized polyaniline nanofiber-based functional cotton and nylon fabrics as millimeter-wave absorbers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Weston, D. A. Electromagnetic Compatibility: Principles and Applications, (Marcel Dekker, New York, United States, 2001).
Tong, X. C. Advanced Materials and Design for Electromagnetic Interference Shielding, (CRC Press, Boca Raton, FL, USA, 2009).
Jagatheesan, K., Ramasamy, A., Das, A. & Basu, A. Electromagnetic shielding behaviour of conductive filler composites and conductive fabrics—a review. Indian J. Fibre Text Res. 39, 329–342 (2014).
Wang, L. L., Tay, B. K. & See, K. Y. Electromagnetic interference shielding effectiveness of carbon based materials prepared by screen printing. Carbon 47, 1905–1910 (2009).
Neelakandan, R., Giridev, V. R., Murugesan, M. & Madhusoothanan, M. Surface resistivity and shear characteristics of polyaniline coated polyester fabric. J. Ind. Text 39, 175–186 (2009).
Cheng, K. B., Ueng, T. H. & Dixon, G. Electrostatic discharge properties of stainless steel/polyester woven fabrics. Text. Res. J. 71, 732–738 (2001).
He, J., Li, R. & Gu, F. Preparation of polyaniline/nylon conducting fabric by layer by layer assembly method. J. Appl. Polym. Sci. 128, 1673–1679 (2013).
Saini, P. & Choudhary, V. Conducting polymer coated textile based multilayered shields for suppression of microwave radiations in 8.2-12.4 GHz range. J. Appl. Polym. Sci. 129, 2832–2839 (2013).
Jin, H., Chen, Q., Chen, Z., Hu, Y. & Zhang, J. Multi-LeapMotion sensor based demonstration for robotic refine tabletop object manipulation task. CAAI Trans. Intell. Technol. 1, 104–113 (2016).
Gupta, K. K., Abbas, S. M. & Abhyankar, A. C. Ultra-lightweight hybrid woven fabric containing stainless steel/polyester composite yarn for total EMI shielding in frequency range 8–18 GHz. J. Electromagnet. Wave 29, 1454–1472 (2015).
Shinagawa, S., Kumagai, Y. & Urabe, K. Conductive papers containing metallized polyester fibers for electromagnetic interference shielding. J. Porous Mat. 6, 185–190 (1999).
Kumar, A., Singh, A. P., Kumari, S., Dutta, P. K., Dhawan, S. K. & Dhar, A. Polyaromatic-hydrocarbon-based carbon copper composites for the suppression of electromagnetic pollution. J. Mater. Chem. A 2, 16632–16639 (2014).
Perumalraj, R. & Dasaradhan, B. S. Electroless nickel plated composite textile materials for electromagnet compatibility. Indian J. Fibre Text. Res. 36, 35–41 (2011).
Gupta, T. K., Singh, B. P., Singh, V. N., Teotia, S., Singh, A. P., Elizabeth, I., Dhakate, S. R., Dhawan, S. K. & Mathur, R. B. MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J. Mater. Chem. A 2, 4256–4263 (2014).
Song, W.-L., Guan, X.-T., Fan, L.-Z., Cao, W.-Q., Wang, C.-Y., Zhao, Q.-L. & Cao, M.-S. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A 3, 2097–2107 (2015).
Qiang, R., Du, Y., Zhao, H., Wang, Y., Tian, C., Li, Z., Han, X. & Xu, P. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426–13434 (2015).
Gupta, T. K., Singh, B. P., Dhakate, S. R., Singh, V. N. & Mathur, R. B. Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J. Mater. Chem. A 1, 9138–9149 (2013).
Kumar, R., Dhakate, S. R., Gupta, T., Saini, P., Singh, B. P. & Mathur, R. B. Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J. Mater. Chem. A 1, 5727–5735 (2013).
Pawar, S. P., Marathe, D. A., Pattabhi, K. & Bose, S. Electromagnetic interference shielding through MWNT grafted Fe3O4 nanoparticles in PC/SAN blends. J. Mater. Chem. A 3, 656–669 (2015).
Bonaldi, R. R., Siores, E. & Shah, T. Characterization of electromagnetic shielding fabrics obtained from carbon nanotube composite coatings. Synthetic Met. 187, 1–8 (2014).
Song, W. L., Mao, S. C., Ming, M. L., Song, B., Chan, Y. W., Jia, L., Jie, Y. & Fan, L. Z. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014).
Kumar, N. M. & Thilagavathi, G. Surface resistivity and EMI shielding effectiveness of polyaniline coated polyester fabric. J. Textile Apparel Technol. Manage. 7, 1–6 (2012).
Abbasi, A. M. R. & Militky, J. EMI shielding effectiveness of polypyrrole coated glass fabric. J. Chem. Chem. Eng. 7, 256–259 (2013).
He, Q., Yuan, T., Zhang, X., Yan, X., Guo, J., Ding, D., Khan, M. A., Young, D. P., Khasanov, A., Luo, Z., Liu, J., Shen, T. D., Liu, X., Wei, S. & Guo, Z. Electromagnetic field absorbing polypropylene nanocomposites with tuned permittivity and permeability by nanoiron and carbon nanotubes. J. Phys. Chem. C 118, 24784–24796 (2014).
Zhu, J., Wei, S., Haldolaarachchige, N., Young, D. P. & Guo, Z. Electromagnetic field shielding polyurethane nanocomposites reinforced with core-shell Fe-silica nanoparticles. J. Phys. Chem. C 115, 15304–15310 (2011).
Guo, Z., Park, S., Hahn, H. T., Wei, S., Moldovan, M., Karki, A. B. & Young, D. P. Magnetic and electromagnetic evaluation of magnetic nanoparticle filled polyurethane nanocomposites. J. Appl. Phys. 101, 09M511 (2007).
Chandrasekhar, P. Conducting Polymers, Fundamentals and Applications: A Practical Approach, (Kluwer Academic, Dordrecht, Netherlands, 1999).
Saini, P., Choudhary, V., Vijayan, N. & Kotnala, R. K. Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J. Phys. Chem. C 116, 13403–13412 (2012).
Skotheim, T. A., Elsenbaumer, R. L. & Reynolds, J. R. Handbook of Conducting Polymers, (Marcel Dekker, New York, United States, 1998).
Joo, J. & Epstein, A. J. Electromagnetic radiation shielding by intrinsically conducting polymers. Appl. Phys. Lett. 65, 2278–2280 (1994).
Saini, P., Choudhary, V. & Dhawan, S. K. Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in-situ polymerization. Polym. Adv. Technol. 23, 343–349 (2012).
Wu, F., Xie, A., Sun, M., Wang, Y. & Wang, M. Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 3, 14358–14369 (2015).
Sivaram Polymer Science Contemporary Themes, (Tata McGraw-Hill, Noida, India, 1991).
Aldissi, M. Intrinsically Conducting Polymers: An Emerging Technology, (Kluwer Academic, Dordrecht, Netherlands, 1993).
Skotheim, T. A. & Reynolds, J. R. Handbook of Conducting Polymers. Third Edition: Conjugated Polymers—Processing and Applications, (CRC Press, Boca Raton, FL, USA,, 2007).
Hakansson, E., Amiet, A., Nahavandi, S. & Kaynak, A. Electromagnetic interference shielding and radiation absorption in thin polypyrrole films. Eur. Polym. J. 43, 205–213 (2007).
Trivedi, D. C. Handbook of Organic Conductive Molecules and Polymers, (John Wiley & Sons Ltd, Chichester, UK, 1997).
Macdiarmid, A. G. Synthetic metals: a novel role for organic polymers. Synthetic Met. 125, 11–22 (2002).
Abbas, S. M., Dixit, A. K., Chatterjee, R. & Goel, T. C. Preparation of nanosize polyaniline and its utilization for microwave absorber. J. Nanosci. Nanotechnol. 7, 2129–2133 (2007).
Makeiff, D. A. & Huber, T. Microwave absorption by polyaniline–carbon nanotube composites. Synthetic Met. 156, 497–505 (2006).
Joseph, N., Varghese, J. & Sebastian, M. T. Facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks. J. Mater. Chem. C 4, 999–1008 (2016).
Seshadri, D. T. & Bhat, N. V. Synthesis and properties of cotton fabrics modified with polypyrrole. Sen’i Gakkaishi 61, 103–108 (2005).
dall’Acqua, L., Tonin, C., Peila, R., Ferrero, F. & Catellani, M. Performances and properties of intrinsic conductive cellulose-polypyrrole textiles. Synthetic Met. 146, 213–221 (2004).
Kim, B., Koncar, V. & Dufour, C. Polyaniline-coated PET conductive yarns: study of electrical, mechanical and electro mechanical properties. J. Appl. Polym. Sci. 101, 1252–1256 (2006).
Kyung, H. H., Kyung, W. O. & Tae, J. K. Polyaniline–nylon 6 composite fabric for ammonia gas sensor. J. Appl. Polym. Sci. 92, 37–42 (2004).
Li, R., Liu, G., Gu, F., Zheng, W., Yang, S. & Jianqing, W. In situ polymerization of aniline on acrylamide grafted cotton. J. Appl. Polym. Sci. 120, 1126–1132 (2011).
Joseph, N., Varghese, J. & Sebastian, M. T. Self-assembled polyaniline nanofibers with enhanced electromagnetic shielding properties. RSC Adv. 5, 20459–20466 (2015).
Lee, K., Cho, S., Park, S. H., Heeger, A. J., Lee, C. W. & Lee, S. H. Metallic transport in polyaniline. Nature 441, 65–68 (2006).
Tantawy, H. R., Aston, D. E., Smith, J. R. & Young, J. L. Comparison of electromagnetic shielding with polyaniline nanopowders produced in solvent-limited conditions. ACS Appl. Mater. Interfaces 5, 4648–4658 (2013).
Fang, L., Zhang, X., Ma, J., Sun, D., Zhang, B. & Luan, J. Eco-friendly cationic modification of cotton fabrics for improving utilization of reactive dyes. RSC Adv. 5, 45654–45661 (2015).
Duan, W., Xie, A., Shen, Y., Wang, X., Wang, F, Zhang, Y. & Li, J. Fabrication of superhydrophobic cotton fabrics with UV protection based on CeO2 particles. Ind. Eng. Chem. Res. 50, 4441–4445 (2011).
Aladpoosh, R., Montazer, M. & Samadi, N. In situ green synthesis of silver nanoparticles on cotton fabric using Seidlitzia rosmarinus ashes. Cellulose 21, 3755–3766 (2014).
Fuan, H., Sienting, L., Helen, L. C. & Jintu, F. High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710–715 (2009).
-Nia, Z. K., Montazer, M. & Latifi, M. Synthesis of nano copper/nylon composite using ascorbic acid and CTAB. Colloids Surf. A Physiochem. Eng. Asp. 439, 167–175 (2013).
Montazer, M., Mozaffari, A. & Alimohammadi, F. Simultaneous dyeing and antibacterial finishing of nylon fabric using acid dyes and colloidal nanosilver. Fibres Text. East. Eur. 23, 100–106 (2015).
Abdullah Dar, M., Kotnala, R. K., Verma, V., Shah, J., Siddiqui, W. A. & Alam, M. High magneto-crystalline anisotropic core-shell structured Mn0.5Zn0.5Fe2O4/polyaniline nanocomposites prepared by in situ emulsion polymerization. J. Phys. Chem. C 116, 5277–5287 (2012).
Annapurna, D. & Sisir, K. D. Microwave Engineering, (Tata McGraw Hill, Noida, India, 2009).
Joseph, N. & Sebastian, M. T. Electromagnetic interference shielding nature of PVDF-carbonyl iron composites. Mater. Lett. 90, 64–67 (2013).
Stempien, Z., Rybicki, T., Rybicki, E., Kozanecki, M. & Szynkowska, M. I. In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synthetic Met. 202, 49–62 (2015).
Guang, S. W., Xiao, J. Z., Yun, Z. W., Shuai, H., Lin, G. & Mao, S. C. Polymer composites with enhanced wave absorption properties based on modified graphite and polyvinylidene fluoride. J. Mater. Chem. A 1, 7031–7036 (2013).
Zongping, C., Chuan, X., Chaoqun, M., Wencai, R. & Hui, M. C. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013).