Quá trình tổng hợp polymer tại chỗ của 1,3-dioxolane thâm nhập vào khung garnet 3D với độ dẫn ion cao và độ ổn định bề mặt tuyệt vời cho pin lithium kim loại rắn tích hợp

Rare Metals - Tập 41 - Trang 3694-3705 - 2022
Lin-Hui Chen1, Ze-Ya Huang2, Shi-Le Chen1, Rong-Ao Tong1, Hai-Long Wang3, Gang Shao3, Chang-An Wang1
1State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
2College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
3School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China

Tóm tắt

Composite điện phân polymer-ceramic được coi là một trong những điện phân hứa hẹn cho pin trạng thái rắn. Tuy nhiên, trong các nghiên cứu trước đây, các hạt gốm thường được phân tán trong ma trận polymer và không thể hình thành các kênh dẫn Li+ liên tục. Sự kết tụ của các hạt gốm cũng có thể dẫn đến độ dẫn ion thấp và tiếp xúc điện cực/điện phân không tốt. Trong nghiên cứu này, điện phân Li6.4La3Zr1.4Ta0.6O12 (LLZTO) tự hỗ trợ có độ xốp được tổng hợp bằng quy trình gelcasting, sở hữu các kênh lỗ rỗng ba chiều (3D) liên kết và độ bền tương đối cao. 1,3-dioxolane (DOL) có thể thâm nhập vào khung LLZTO xốp do tính lưu động tuyệt vời của nó. Quy trình tổng hợp polymer tại chỗ tiếp theo thông qua xử lý nhiệt có thể lấp đầy hoàn toàn các lỗ nội và cải thiện tiếp xúc bề mặt với điện cực. Điện phân composite 3D tạo ra với hai kênh dẫn Li+ liên tục trong các thành phần gốm và polymer thể hiện độ dẫn ion cao 2.8 × 10–4 S·cm−1 ở nhiệt độ phòng và điện trở bề mặt Li/điện phân thấp 94 Ω·cm2 ở 40 °C. Pin đối xứng Li/Li tương ứng cung cấp các đặc tính điện áp ổn định trong hơn 600 giờ dưới 0.1 và 0.2 mA·cm−2. Pin Li/LiFePO4 trạng thái rắn cho hiệu suất tần suất và chu kỳ vượt trội dưới 0.1C và 0.2C. Công việc này hướng dẫn việc chuẩn bị điện phân composite với các kênh dẫn Li+ liên tục kép cũng như tỷ lệ gốm cao và chiến lược sửa đổi bề mặt cho pin lithium kim loại rắn.

Từ khóa

#điện phân composite #dẫn ion #pin trạng thái rắn #Li+ dẫn xuất #polymer #gốm #cấu trúc ba chiều

Tài liệu tham khảo

Liu Y, Xu X, Sadd M, Kapitanova OO, Krivchenko VA, Ban J, Wang J, Jiao X, Song Z, Song J, Xiong S, Matic A. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Adv Sci. 2021;8(5):2003301. https://doi.org/10.1002/advs.202003301. Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 2020;5(3):229. https://doi.org/10.1038/s41578-019-0165-5. Han X, Gong Y, Fu KK, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017;16(5):572. https://doi.org/10.1038/NMAT4821. Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan LZ, Nan CW. Solid garnet batteries. Joule. 2019;3(5):1190. https://doi.org/10.1016/j.joule.2019.03.019. Tong RA, Chen L, Shao G, Wang H, Wang CA. An integrated solvent-free modification and composite process of Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide) solid electrolytes: enhanced compatibility and cycle performance. J Power Sources. 2021. https://doi.org/10.1016/j.jpowsour.2021.229672. Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev. 2014;43(13):4714. https://doi.org/10.1039/c4cs00020j. Xu X, Liu Y, Hwang JY, Kapitanova OO, Song Z, Sun YK, Matic A, Xiong S. Role of Li-ion depletion on electrode surface: underlying mechanism for electrodeposition behavior of lithium metal anode. Adv Energy Mater. 2020;10(44):2002390. https://doi.org/10.1002/aenm.202002390. Jung SH, Oh K, Nam YJ, Oh DY, Brüner P, Kang K, Jung YS. Li3BO3–Li2CO3: rationally designed buffering phase for sulfide all-solid-state Li-ion batteries. Chem Mater. 2018;30(22):8190. https://doi.org/10.1021/acs.chemmater.8b03321. Yang TQ, Wang C, Zhang WK, Xia Y, Gan YP, Huang H, He XP, Zhang J. Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0.33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery. Rare Metals. 2022;41(6):1870. https://doi.org/10.1007/s12598-021-01891-1. Manuel SA, Nahm KS. Review on composite polymer electrolytes for lithium batteries. Polymer. 2006;47(16):5952. https://doi.org/10.1016/j.polymer.2006.05.069. Cheng S, Smith DM, Li CY. How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes? Macromolecules. 2014;47(12):3978. https://doi.org/10.1021/ma500734q. Tong RA, Chen L, Fan B, Shao G, Liu R, Wang CA. Solvent-free process for blended PVDF-HFP/PEO and LLZTO composite solid electrolytes with enhanced mechanical and electrochemical properties for lithium metal batteries. ACS Appl Energy Mater. 2021;4(10):11802. https://doi.org/10.1021/acsaem.1c02566. Zhang X, Xie J, Shi F, Lin D, Liu Y, Liu W, Pei A, Gong Y, Wang H, Liu K, Xiang Y, Cui Y. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 2018;18(6):3829. https://doi.org/10.1021/acs.nanolett.8b01111. Jia W, Li Z, Wu Z, Wang L, Wu B, Wang Y, Cao Y, Li J. Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. Solid State Ionics. 2018;315:7. https://doi.org/10.1016/j.ssi.2017.11.026. Lu Y, Zhang X, Xue C, Xin C, Li M, Nan CW, Shen Y. Three-dimensional structured asymmetric electrolytes for high interface stability and fast Li-ion transport in solid-state Li-metal batteries. Mater Today Energy. 2020;18: 100522. https://doi.org/10.1016/j.mtener.2020.100522. Huang Z, Tong RA, Zhang J, Chen L, Wang CA. Blending poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by Haake rheomixer without any solvent: a low-cost manufacture method for mass production of composite polymer electrolyte. J Power Sources. 2020;451:227797. https://doi.org/10.1016/j.jpowsour.2020.227797. Cui LF, Ju JW, Cui GL. Three-dimensional porous ceramic framework reinforcing composite electrolyte. Acta Physica Sinica. 2020;69(22):228203. https://doi.org/10.7498/aps.69.20201552. Liu Y, Xu X, Kapitanova OO, Evdokimov PV, Song Z, Matic A, Xiong S. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv Energy Mater. 2022;21:3589. https://doi.org/10.1002/aenm.202103589. Xiong S, Liu Y, Jankowski P, Liu Q, Nitze F, Xie K, Song J, Matic A. Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries. Adv Func Mater. 2020;30(22):2001444. https://doi.org/10.1002/adfm.202001444. Yang J, Yu J, Huang Y. Recent developments in gelcasting of ceramics. J Eur Ceram Soc. 2011;31(14):2569. https://doi.org/10.1016/j.jeurceramsoc.2010.12.035. Liu FQ, Wang WP, Yin YX, Zhang SF, Shi JL, Wang L, Zhang XD, Zheng Y, Zhou JJ, Li L, Guo YG. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci Adv. 2018;4(10):5383. https://doi.org/10.1126/sciadv.aat5383. Chen L, Huang Z, Pang W, Jin Z, Li Y, Wang CA. Dual interface layers for solid-state Li metal battery with low interfacial resistance and small polarization based on garnet electrolyte. Electrochim Acta. 2020;330:135352. https://doi.org/10.1016/j.electacta.2019.135352. Dong X, Wang M, Guo A, Zhang Y, Ren S, Sui G, Du H. Synthesis and properties of porous alumina ceramics with inter-locked plate-like structure through the tert-butyl alcohol-based gel-casting method. J Alloy Compd. 2017;694:1045. https://doi.org/10.1016/j.jallcom.2016.10.153. Sun Z, Fan J, Yuan F. Three-dimensional porous silica ceramics with tailored uniform pores: prepared by inactive spheres. J Eur Ceram Soc. 2015;35(13):3559. https://doi.org/10.1016/j.jeurceramsoc.2015.06.020. Huang Z, Chen L, Huang B, Xu B, Shao G, Wang H, Li Y, Wang CA. Enhanced Performance of Li6.4La3Zr1.4Ta0.6O12 solid electrolyte by the regulation of grain and grain boundary phases. ACS Appl Mater Interfaces. 2020;12(50):56118. https://doi.org/10.1021/acsami.0c18674. Liu Q, Cai B, Li S, Yu Q, Lv F, Kang F, Wang Q, Li B. Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte. J Mater Chem A. 2020;8(15):7197. https://doi.org/10.1039/d0ta02148b. Bae J, Li Y, Zhao F, Zhou X, Ding Y, Yu G. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater. 2018;15:46. https://doi.org/10.1016/j.ensm.2018.03.016. Shen C, Huang Y, Yang J, Chen M, Liu Z. Unraveling the mechanism of ion and electron migration in composite solid-state electrolyte using conductive atomic force microscopy. Energy Storage Mater. 2021;39:271. https://doi.org/10.1016/j.ensm.2021.04.028. Lu Z, Yang L, Guo Y. Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis. J Power Sources. 2006;156(2):555. https://doi.org/10.1016/j.jpowsour.2005.05.085. Ma L, Chen S, Li X, Chen A, Dong B, Zhi C. Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by in situ constructed polymer electrolyte. Angew Chem Int Ed Engl. 2020;132(52):24044. https://doi.org/10.1002/anie.202011788. Geng Z, Huang Y, Sun G, Chen R, Cao W, Zheng J, Li H. In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries. Nano Energy. 2022;91:106679. https://doi.org/10.1016/j.nanoen.2021.106679. Chen KH, Wood KN, Kazyak E, LePage WS, Davis AL, Sanchez AJ, Dasgupta NP. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J Mater Chem A. 2017;5(23):11671. https://doi.org/10.1039/c7ta00371d. Pu KC, Zhang X, Qu XL, Hu JJ, Li HW, Gao MX, Pan HG, Liu YF. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Met. 2020;39(6):616. https://doi.org/10.1007/s12598-020-01432-2. Kong L, Zhan H, Li Y, Zhou Y. In situ fabrication of lithium polymer battery basing on a novel electro-polymerization technique. Electrochem Commun. 2007;9(10):2557. https://doi.org/10.1016/j.elecom.2007.08.001. Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat Energy. 2019;4(5):365. https://doi.org/10.1038/s41560-019-0349-7. Wang Y, Xu R, Xiao B, Lv D, Peng Y, Zheng Y, Shen Y, Chai J, Lei X, Luo S, Wang X, Liang X, Feng J, Liu Z. A poly(1,3-dioxolane) based deep-eutectic polymer electrolyte for high performance ambient polymer lithium battery. Mater Today Phys. 2022;22:100620. https://doi.org/10.1016/j.mtphys.2022.100620. Yang H, Jing MX, Li HP, Yuan WY, Deng B, Liu QY, Ju BW, Zhang XW, Hussain S, Shen XQ, Yan XH. “Environment-friendly” polymer solid electrolyte membrane via a rapid surface-initiating polymeration strategy. Chem Eng J. 2021;421:129710. https://doi.org/10.1016/j.cej.2021.129710. Li Z, Sha WX, Guo X. Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability. ACS Appl Mater Interfaces. 2019;11(30):26920. https://doi.org/10.1021/acsami.9b07830. Guanglei CUI, Shougang C, Meiyan YU, Jiangwei JU, Yiyuan YAN. In-situ polymerization integrating 3D ceramic framework in all solid-state lithium battery. J Inorganic Mater. 2020;35(12):1357. https://doi.org/10.15541/jim20200152.