In situ fabrication of hierarchical iron oxide spheres@N-doped 3D porous graphene aerogel for superior lithium storage

Ionics - 2020
Jingmei Li1, Zhipeng Ma1, Shuaiguo Hao1, Shuanlong Di2, Li Su2, Xiujuan Qin1, Guangjie Shao1
1State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
2Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Su L, Gao L, Du Q, Hou L, Ma Z, Qin X, Shao G (2018) Construction of NiCo2O4@MnO2 nanosheet arrays for high-performance supercapacitor: Highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution. Journal of Alloys and Compounds 749:900–908. https://doi.org/10.1016/j.jallcom.2018.03.353

Song A, Cao L, Yang W, Yang W, Wang L, Ma Z, Shao G (2019) In situ construction of nitrogen-doped graphene with surface-grown carbon nanotubes as a multifactorial synergistic catalyst for oxygen reduction. Carbon 142:40–50. https://doi.org/10.1016/j.carbon.2018.09.088

Du J, Wang LX, Bai L, Dang SJ, Su L, Qin XJ, Shao GJ (2019) Datura-like Ni-HG-rGO as highly efficient electrocatalyst for hydrogen evolution reaction in alkaline conditions. Journal of Colloid and Interface Science 535:75–83. https://doi.org/10.1016/j.jcis.2018.09.063

Ma Y, Huang J, Liu X, Bu F, Wang L, Xie Q, Peng D-L (2017) 3D graphene-encapsulated hierarchical urchin-like Fe 3 O 4 porous particles with enhanced lithium storage properties. Chemical Engineering Journal 327:678–685. https://doi.org/10.1016/j.cej.2017.06.147

Li S, Wang M, Luo Y, Huang J (2016) Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. Acs Appl Mater Interfaces 8(27):17343–17351. https://doi.org/10.1021/acsami.6b05206

Xiong D, Li X, Shan H, Yan B, Li D, Langford C, Sun X (2016) Scalable synthesis of functionalized graphene as cathodes in Li-ion electrochemical energy storage devices. Applied Energy 175:512–521. https://doi.org/10.1016/j.apenergy.2016.03.105

Zhao N, Wu S, He C, Wang Z, Shi C, Liu E, Li J (2013) One-pot synthesis of uniform Fe3O4 nanocrystals encapsulated in interconnected carbon nanospheres for superior lithium storage capability. Carbon 57:130–138. https://doi.org/10.1016/j.carbon.2013.01.056

Dong X, Liu WB, Chen X, Yan JZ, Li N, Shi SQ, Zhang SC, Yang XS (2018) Novel three dimensional hierarchical porous Sn-Ni alloys as anode for lithium ion batteries with long cycle life by pulse electrodeposition. Chemical Engineering Journal 350:791–798. https://doi.org/10.1016/j.cej.2018.06.031

Wang MS, Wang ZQ, Jia R, Yang Y, Zhu FY, Yang ZL, Huang Y, Li X, Xu W (2018) Facile electrostatic self-assembly of silicon/reduced graphene oxide porous composite by silica assist as high performance anode for Li-ion battery. Applied Surface Science 456:379–389. https://doi.org/10.1016/j.apsusc.2018.06.147

Xu X, Liu J, Liu Z, Shen J, Hu R, Liu J, Ouyang L, Zhang L, Zhu M (2017) Robust Pitaya-Structured Pyrite as High Energy Density Cathode for High-Rate Lithium Batteries. ACS Nano 11(9):9033–9040. https://doi.org/10.1021/acsnano.7b03530

Xu C, Zeng Y, Rui X, Xiao N, Zhu J, Zhang W, Chen J, Liu W, Tan H, Hng HH, Yan Q (2012) Controlled Soft-Template Synthesis of Ultrathin C@FeS Nanosheets with High-Li-Storage Performance. Acs Nano 6(6):4713–4721. https://doi.org/10.1021/nn2045714

Zhang Y, Li Q, Liu J, You W, Fang F, Wang M, Che R (2018) Hierarchical Fe2O3@C@MnO2@C Multishell Nanocomposites for High Performance Lithium Ion Batteries and Catalysts. Langmuir 34(18):5225–5233. https://doi.org/10.1021/acs.langmuir.8b00356

Ren W, Liu D, Sun C, Yao X, Tan J, Wang C, Zhao K, Wang X, Li Q, Mai L (2018) Nonhierarchical Heterostructured Fe2 O3 /Mn2 O3 Porous Hollow Spheres for Enhanced Lithium Storage. Small 14(26):e1800659. https://doi.org/10.1002/smll.201800659

Liu H, Luo S-h, D-x Z, Hu D-b, Yi T-F, Wang Z-y, Y-h Z, Y-g L, Wang Q, A-m H, X-w L, Guo R (2019) A Simple and Low-Cost Method to Synthesize Cr-Doped α-Fe2O3 Electrode Materials for Lithium-Ion Batteries. ChemElectroChem 6(3):856–864. https://doi.org/10.1002/celc.201801736

Liu H, Luo S-h, S-x Y, Wang Q, Hu D-b, Wang Y-l, Feng J, Yi T-F (2019) High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Composites Part B: Engineering 164:576–582

Xu S, Hessel CM, Ren H, Yu R, Jin Q, Yang M, Zhao H, Wang D (2014) alpha-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7(2):632–637. https://doi.org/10.1039/c3ee43319f

Liu L, Yang X, Lv C, Zhu A, Zhu X, Guo S, Chen C, Yang D (2016) Seaweed-Derived Route to Fe2O3 Hollow Nanoparticles/N-Doped Graphene Aerogels with High Lithium Ion Storage Performance. Acs Appl Mater Interfaces 8(11):7047–7053. https://doi.org/10.1021/acsami.5b12427

Ding R, Zhang J, Qi J, Li Z, Wang C, Chen M (2018) N-Doped Dual Carbon-Confined 3D Architecture rGO/Fe3O4/AC Nanocomposite for High-Performance Lithium-Ion Batteries. Acs Appl Mater Interfaces 10(16):13470–13478. https://doi.org/10.1021/acsami.8b00353

Zhu J, Yin Z, Yang D, Sun T, Yu H, Hoster HE, Hng HH, Zhang H, Yan Q (2013) Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ Sci 6(3):987–993. https://doi.org/10.1039/c2ee24148j

Chen YX, He LH, Shang PJ, Tang QL, Liu ZQ, Liu HB, Zhou LP (2011) Micro-sized and Nano-sized Fe3O4 Particles as Anode Materials for Lithium-ion Batteries. J Mater Sci Technol 27(1):41–45. https://doi.org/10.1016/s1005-0302(11)60023-6

Wang J, Zhao H, Zeng Z, Lv P, Li Z, Zhang T, Yang T (2014) Nano-sized Fe3O4/carbon as anode material for lithium ion battery. Materials Chemistry and Physics 148(3):699–704. https://doi.org/10.1016/j.matchemphys.2014.08.037

Geng H, Zhou Q, Pan Y, Gu H, Zheng J (2014) Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries. Nanoscale 6(7):3889–3894. https://doi.org/10.1039/c3nr06409c

Wu Z, Tan D, Tian K, Hu W, Wang J, Su M, Li L (2017) Facile Preparation of Core-Shell Fe3O4@Polypyrrole Composites with Superior Electromagnetic Wave Absorption Properties. Journal of Physical Chemistry C 121(29):15784–15792. https://doi.org/10.1021/acs.jpcc.7b04230

Wang C, Shao G, Ma Z, Liu S, Song W, Song J (2014) Constructing Fe3O4@N-rich Carbon Core-Shell Microspheres as Anode for Lithium Ion Batteries with Enhanced Electrochemical Performance. Electrochimica Acta 130:679–688. https://doi.org/10.1016/j.electacta.2014.03.093

Zhang Y, Tang Y, Gao S, Jia D, Ma J, Liu L (2017) Sandwich-Like CNT@Fe3O4@C Coaxial Nanocables with Enhanced Lithium-Storage Capability. Acs Appl Mater Interfaces 9(2):1453–1458. https://doi.org/10.1021/acsami.6b12482

Kwon YH, Minnici K, Park JJ, Lee SR, Zhang G, Takeuchi ES, Takeuchi KJ, Marschilok AC, Reichmanis E (2018) SWNT Anchored with Carboxylated Polythiophene "Links" on High-Capacity Li-Ion Battery Anode Materials. J Am Chem Soc 140(17):5666–5669. https://doi.org/10.1021/jacs.8b00693

Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Mullen K (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25(21):2909–2914. https://doi.org/10.1002/adma.201300445

Zhao L, Gao M, Yue W, Jiang Y, Wang Y, Ren Y, Hu F (2015) Sandwich-Structured Graphene-Fe3O4@Carbon Nanocomposites for High-Performance Lithium-Ion Batteries. Acs Appl Mater Interfaces 7(18):9709–9715. https://doi.org/10.1021/acsami.5b01503

Jiang T, Bu F, Feng X, Shakir I, Hao G, Xu Y (2017) Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery. ACS Nano 11(5):5140–5147. https://doi.org/10.1021/acsnano.7b02198

Li H, Zhu X, Sitinamaluwa H, Wasalathilake K, Xu L, Zhang S, Yan C (2017) Graphene oxide wrapped Fe 2 O 3 as a durable anode material for high-performance lithium-ion batteries. Journal of Alloys and Compounds 714:425–432. https://doi.org/10.1016/j.jallcom.2017.04.260

Du Q, Su L, Hou L, Sun G, Feng M, Yin X, Ma Z, Shao G, Gao W (2018) Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds 740:1051–1059. https://doi.org/10.1016/j.jallcom.2018.01.069

Ma Y, Huang J, Lin L, Xie Q, Yan M, Qu B, Wang L, Mai L, Peng D-L (2017) Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe3O4 nano-flower architecture with high lithium storage capacity and excellent rate capability. Journal of Power Sources 365:98–108. https://doi.org/10.1016/j.jpowsour.2017.08.054

Wang R, Xu C, Sun J, Gao L (2014) Three-Dimensional Fe2O3 Nanocubes/Nitrogen-doped Graphene Aerogels: Nucleation Mechanism and Lithium Storage Properties. Scientific Reports 4. https://doi.org/10.1038/srep07171

Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131. https://doi.org/10.1016/j.nanoen.2011.11.001

Hummer WS, Offeman RE (1958) Functionalized graphene and graphene oxide: Materials synthesis and electronic applications. J Am Chem Soc:80

Jr WSH, Offeman RE (1958) Preparation of Graphitic Oxide. Jamchemsoc 80(6):1339

Liu H, Luo S-h, Hu D-b, Liu X, Wang Q, Wang Z-y, Wang Y-l, L-j C, Y-g L, Yi T-F (2019) Design and synthesis of carbon-coated α-Fe2O3@ Fe3O4 heterostructured as anode materials for lithium ion batteries. Applied Surface Science 495:143590

Fan H, Hong Y, Zhang Y, Jing G, Zhen W, Hao W, Ning Z, Yun Z, Du C, Dai Z (2017) 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe 2 @C core-shell nanorods for advanced sodium ion batteries. Energy Storage Materials 10:S2405829717302325

Wan M, Zeng R, Chen K, Liu G, Chen W, Wang L, Zhang N, Xue L, Zhang W, Huang Y (2018) Fe7Se8 nanoparticles encapsulated by nitrogen-doped carbon with high sodium storage performance and evolving redox reactions. Energy Storage Materials 10:114–121. https://doi.org/10.1016/j.ensm.2017.08.013

Liu DH, Lu HY, Wu XL, Hou BH, Wan F, Bao SD, Yan QY, Xie HM, Wang RS (2015) Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries. Journal of Materials Chemistry A 3(39):19738–19746. https://doi.org/10.1039/c5ta03556b

Zhang S, Li C, Zhang X, Sun X, Wang K, Ma Y (2017) High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4-Graphene Composite Anode and Activated Carbon Cathode. Acs Appl Mater Interfaces 9(20):17136–17144. https://doi.org/10.1021/acsami.7b03452

Ge P, Hou H, Li S, Yang L, Ji X (2018) Tailoring Rod-Like FeSe2 Coated with Nitrogen-Doped Carbon for High-Performance Sodium Storage. Advanced Functional Materials 28(30):1801765. https://doi.org/10.1002/adfm.201801765

Ge P, Li SJ, Xu LQ, Zou KY, Gao X, Cao XY, Zou GQ, Hou HS, Ji XB (2019) Hierarchical Hollow-Microsphere Metal-Selenide@Carbon Composites with Rational Surface Engineering for Advanced Sodium Storage. Advanced Energy Materials 9(1):13. https://doi.org/10.1002/aenm.201803035

Liu W, Li J, Feng K, Sy A, Liu Y, Lim L, Lui G, Tjandra R, Rasenthiram L, Chiu G, Yu A (2016) Advanced Li-Ion Hybrid Supercapacitors Based on 3D Graphene-Foam Composites. Acs Appl Mater Interfaces 8(39):25941–25953. https://doi.org/10.1021/acsami.6b07365

Wang X, Chen K, Wang G, Liu X, Wang H (2017) Rational Design of Three-Dimensional Graphene Encapsulated with Hollow FeP@Carbon Nanocomposite as Outstanding Anode Material for Lithium Ion and Sodium Ion Batteries. ACS Nano 11(11):11602–11616. https://doi.org/10.1021/acsnano.7b06625

Wang YZ, Wang LX, Ma ZP, Gao LJ, Yin XC, Song AL, Qin XJ, Shao GJ, Gao WM (2018) 3D-structured carbon-coated MnO/graphene nanocomposites with exceptional electrochemical performance for Li-ion battery anodes. Journal of Solid State Electrochemistry 22(10):2977–2987. https://doi.org/10.1007/s10008-018-4006-z

Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J-C, Pennycook SJ, Dai H (2012) An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nature Nanotechnology 7(6):394–400. https://doi.org/10.1038/nnano.2012.72

Yang W, Yang W, Song AL, Sun G, Shao GJ (2018) 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries. Nanoscale 10(2):816–824. https://doi.org/10.1039/c7nr06805k

Yang W, Yang W, Kong L, Song A, Qin X, Shao G (2018) Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: A balanced strategy for pore structure and chemical composition. Carbon 127:557–567. https://doi.org/10.1016/j.carbon.2017.11.050

Zheng C, Niu S, Lv W, Zhou G, Li J, Fan S, Deng Y, Pan Z, Li B, Kang F (2017) Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries. Nano Energy 33:306–312

Pham-Cong D, Kim SJ, Jeong SY, Kim JP, Kim HG, Braun PV, Cho CR Enhanced cycle stability of iron(II, III) oxide nanoparticles encapsulated with nitrogen-doped carbon and graphene frameworks for lithium battery anodes. Carbon

Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. Acs Nano 4(3):1321–1326. https://doi.org/10.1021/nn901850u

Qi L, Xin Y, Zuo Z, Yang C, Wu K, Wu B, Zhou H (2016) Grape-like Fe3O4 Agglomerates Grown on Graphene Nanosheets for Ultrafast and Stable Lithium Storage. Acs Appl Mater Interfaces 8(27):17245

Yang W, Yang W, Sun B, Di S, Yan K, Wang G, Shao G (2018) Mixed Lithium Oxynitride/Oxysulfide as an Interphase Protective Layer To Stabilize Lithium Anodes for High-Performance Lithium-Sulfur Batteries. Acs Appl Mater Interfaces 10(46):39695–39704. https://doi.org/10.1021/acsami.8b14045

Wang Y, Gao Y, Shao J, Holze R, Chen Z, Yun Y, Qu Q, Zheng H (2018) Ultrasmall Fe3O4 nanodots within N-doped carbon frameworks from MOFs uniformly anchored on carbon nanowebs for boosting Li-ion storage. Journal of Materials Chemistry A 6(8):3659–3666. https://doi.org/10.1039/c7ta10330a

Luo S-h, Hu D-b, Liu H, J-z L, Yi T-F (2019) Hydrothermal synthesis and characterization of α-Fe2O3/C using acid-pickled iron oxide red for Li-ion batteries. Journal of hazardous materials 368:714–721

Huang X, Chen J, Lu Z, Yu H, Yan Q, Hng HH (2013) Carbon inverse opal entrapped with electrode active nanoparticles as high-performance anode for lithium-ion batteries. Scientific Reports:3. https://doi.org/10.1038/srep02317

Luo J, Liu J, Zeng Z, Ng CF, Ma L, Zhang H, Lin J, Shen Z, Fan HJ (2013) Three-Dimensional Graphene Foam Supported Fe3O4 Lithium Battery Anodes with Long Cycle Life and High Rate Capability. Nano Letters 13(12):6136–6143. https://doi.org/10.1021/nl403461n

Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH (2009) Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors. J Am Chem Soc 131(5):1802–1809. https://doi.org/10.1021/ja8057309

Yang W, Yang W, Zhang F, Wang GX, Shao GJ (2018) Hierarchical Interconnected Expanded Graphitic Ribbons Embedded with Amorphous Carbon: An Advanced Carbon Nanostructure for Superior Lithium and Sodium Storage. Small 14(39):11. https://doi.org/10.1002/smll.201802221