In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics

Joule - Tập 7 - Trang 1363-1381 - 2023
Zhuoxin Li1, Xing Li2, Xianggang Chen1, Xiaoxia Cui1, Chunlin Guo2,3, Xuzheng Feng1, Dongxu Ren1, Yaqi Mo1, Miao Yang1, Huiwei Huang3, Rui Jia2, Xuepeng Liu1, Liyuan Han4, Songyuan Dai1,5, Molang Cai1,5
1Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University, Beijing 102206, China
2Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
3Jiangsu Shunfeng Photovoltaic Technology Co., Ltd, Jiangsu 213164, China
4State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
5State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China

Tài liệu tham khảo

Anaya, 2017, ABX3 perovskites for tandem solar cells, Joule, 1, 769, 10.1016/j.joule.2017.09.017 Unger, 2017, Roadmap and roadblocks for the band gap tunability of metal halide perovskites, J. Mater. Chem. A, 5, 11401, 10.1039/C7TA00404D Hoke, 2015, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics, Chem. Sci., 6, 613, 10.1039/C4SC03141E Chen, 2021, Unified theory for light-induced halide segregation in mixed halide perovskites, Nat. Commun., 12, 2687, 10.1038/s41467-021-23008-z Bischak, 2017, Origin of reversible photoinduced phase separation in hybrid perovskites, Nano Lett., 17, 1028, 10.1021/acs.nanolett.6b04453 Knight, 2020, Preventing phase segregation in mixed-halide perovskites: A perspective, Energy Environ. Sci., 13, 2024, 10.1039/D0EE00788A Dang, 2019, Multi-cation synergy suppresses phase segregation in mixed-halide perovskites, Joule, 3, 1746, 10.1016/j.joule.2019.05.016 Bush, 2018, Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation, ACS Energy Lett., 3, 428, 10.1021/acsenergylett.7b01255 Draguta, 2017, Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites, Nat. Commun., 8, 200, 10.1038/s41467-017-00284-2 Nandi, 2021, Stabilizing mixed halide lead perovskites against photoinduced phase segregation by A-site cation alloying, ACS Energy Lett., 6, 837, 10.1021/acsenergylett.0c02631 Kieslich, 2014, Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog, Chem. Sci., 5, 4712, 10.1039/C4SC02211D Xu, 2020, Triple-halide wide-bandgap perovskites with suppressed phase segregation for efficient tandems, Science, 367, 1097, 10.1126/science.aaz5074 Tan, 2018, Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites, Nat. Commun., 9, 10.1038/s41467-018-05531-8 Gharibzadeh, 2019, Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure, Adv. Energy Mater., 9 Kim, 2020, Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites, Science, 368, 155, 10.1126/science.aba3433 Isikgor, 2021, Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation, Joule, 5, 1566, 10.1016/j.joule.2021.05.013 Zhou, 2017, Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance, Adv. Energy Mater., 7, 10.1002/aenm.201701048 Proppe, 2019, Photochemically cross-linked quantum well ligands for 2D/3D perovskite photovoltaics with improved photovoltage and stability, J. Am. Chem. Soc., 141, 14180, 10.1021/jacs.9b05083 Zhang, 2022, Reconstructed covalent organic frameworks, Nature, 604, 72, 10.1038/s41586-022-04443-4 Guo, 2021, Synergistic defect passivation for highly efficient and stable perovskite solar cells using sodium dodecyl benzene sulfonate, ACS Appl. Energy Mater., 4, 4910, 10.1021/acsaem.1c00502 Chen, 2020, Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration, ACS Energy Lett., 5, 2560, 10.1021/acsenergylett.0c01350 Li, 2022, Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS, Nat. Commun., 13 Kim, 2020, Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells, Science, 370, 108, 10.1126/science.abc4417 Zhao, 2020, Strain-activated light-induced halide segregation in mixed-halide perovskite solids, Nat. Commun., 11, 10.1038/s41467-020-20066-7 Muscarella, 2020, Lattice compression increases the activation barrier for phase segregation in mixed-halide perovskites, ACS Energy Lett., 5, 3152, 10.1021/acsenergylett.0c01474 Wang, 2022, Strain modulation for light-stable n–i–p perovskite/silicon tandem solar cells, Adv. Mater., 34 Zhang, 2021, Recent progress of minimal voltage losses for high-performance perovskite photovoltaics, Nano Energy, 81, 105634, 10.1016/j.nanoen.2020.105634 Li, 2022, Enhanced photovoltaic performance via a bifunctional additive in tin-based perovskite solar cells, ACS Appl. Energy Mater., 5, 108, 10.1021/acsaem.1c02488 Li, 2020, Water-assisted crystal growth in quasi-2D perovskites with enhanced charge transport and photovoltaic performance, Adv. Energy Mater., 10, 10.1002/aenm.202001832 Oliver, 2022, Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells, Energy Environ. Sci., 15, 714, 10.1039/D1EE02650J Wang, 2022, 2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%, Nano Energy, 94, 10.1016/j.nanoen.2021.106914 Wu, 2020, Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells, Joule, 4, 1248, 10.1016/j.joule.2020.04.001 An, 2020, Cerium-doped indium oxide transparent electrode for semi-transparent perovskite and perovskite/silicon tandem solar cells, Sol. Energy, 196, 409, 10.1016/j.solener.2019.12.040 Chen, 2020, Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems, Nat. Commun., 11 Kühne, 2020, CP2K: an electronic structure and molecular dynamics software package - quickstep: efficient and accurate electronic structure calculations, J. Chem. Phys., 152 VandeVondele, 2007, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, J. Chem. Phys., 127 Grimme, 2010, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132