In situ epitaxial growth of blocking structure in mixed-halide wide-band-gap perovskites for efficient photovoltaics
Tài liệu tham khảo
Anaya, 2017, ABX3 perovskites for tandem solar cells, Joule, 1, 769, 10.1016/j.joule.2017.09.017
Unger, 2017, Roadmap and roadblocks for the band gap tunability of metal halide perovskites, J. Mater. Chem. A, 5, 11401, 10.1039/C7TA00404D
Hoke, 2015, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics, Chem. Sci., 6, 613, 10.1039/C4SC03141E
Chen, 2021, Unified theory for light-induced halide segregation in mixed halide perovskites, Nat. Commun., 12, 2687, 10.1038/s41467-021-23008-z
Bischak, 2017, Origin of reversible photoinduced phase separation in hybrid perovskites, Nano Lett., 17, 1028, 10.1021/acs.nanolett.6b04453
Knight, 2020, Preventing phase segregation in mixed-halide perovskites: A perspective, Energy Environ. Sci., 13, 2024, 10.1039/D0EE00788A
Dang, 2019, Multi-cation synergy suppresses phase segregation in mixed-halide perovskites, Joule, 3, 1746, 10.1016/j.joule.2019.05.016
Bush, 2018, Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation, ACS Energy Lett., 3, 428, 10.1021/acsenergylett.7b01255
Draguta, 2017, Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites, Nat. Commun., 8, 200, 10.1038/s41467-017-00284-2
Nandi, 2021, Stabilizing mixed halide lead perovskites against photoinduced phase segregation by A-site cation alloying, ACS Energy Lett., 6, 837, 10.1021/acsenergylett.0c02631
Kieslich, 2014, Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog, Chem. Sci., 5, 4712, 10.1039/C4SC02211D
Xu, 2020, Triple-halide wide-bandgap perovskites with suppressed phase segregation for efficient tandems, Science, 367, 1097, 10.1126/science.aaz5074
Tan, 2018, Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites, Nat. Commun., 9, 10.1038/s41467-018-05531-8
Gharibzadeh, 2019, Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure, Adv. Energy Mater., 9
Kim, 2020, Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites, Science, 368, 155, 10.1126/science.aba3433
Isikgor, 2021, Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation, Joule, 5, 1566, 10.1016/j.joule.2021.05.013
Zhou, 2017, Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance, Adv. Energy Mater., 7, 10.1002/aenm.201701048
Proppe, 2019, Photochemically cross-linked quantum well ligands for 2D/3D perovskite photovoltaics with improved photovoltage and stability, J. Am. Chem. Soc., 141, 14180, 10.1021/jacs.9b05083
Zhang, 2022, Reconstructed covalent organic frameworks, Nature, 604, 72, 10.1038/s41586-022-04443-4
Guo, 2021, Synergistic defect passivation for highly efficient and stable perovskite solar cells using sodium dodecyl benzene sulfonate, ACS Appl. Energy Mater., 4, 4910, 10.1021/acsaem.1c00502
Chen, 2020, Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration, ACS Energy Lett., 5, 2560, 10.1021/acsenergylett.0c01350
Li, 2022, Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS, Nat. Commun., 13
Kim, 2020, Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells, Science, 370, 108, 10.1126/science.abc4417
Zhao, 2020, Strain-activated light-induced halide segregation in mixed-halide perovskite solids, Nat. Commun., 11, 10.1038/s41467-020-20066-7
Muscarella, 2020, Lattice compression increases the activation barrier for phase segregation in mixed-halide perovskites, ACS Energy Lett., 5, 3152, 10.1021/acsenergylett.0c01474
Wang, 2022, Strain modulation for light-stable n–i–p perovskite/silicon tandem solar cells, Adv. Mater., 34
Zhang, 2021, Recent progress of minimal voltage losses for high-performance perovskite photovoltaics, Nano Energy, 81, 105634, 10.1016/j.nanoen.2020.105634
Li, 2022, Enhanced photovoltaic performance via a bifunctional additive in tin-based perovskite solar cells, ACS Appl. Energy Mater., 5, 108, 10.1021/acsaem.1c02488
Li, 2020, Water-assisted crystal growth in quasi-2D perovskites with enhanced charge transport and photovoltaic performance, Adv. Energy Mater., 10, 10.1002/aenm.202001832
Oliver, 2022, Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells, Energy Environ. Sci., 15, 714, 10.1039/D1EE02650J
Wang, 2022, 2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24%, Nano Energy, 94, 10.1016/j.nanoen.2021.106914
Wu, 2020, Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells, Joule, 4, 1248, 10.1016/j.joule.2020.04.001
An, 2020, Cerium-doped indium oxide transparent electrode for semi-transparent perovskite and perovskite/silicon tandem solar cells, Sol. Energy, 196, 409, 10.1016/j.solener.2019.12.040
Chen, 2020, Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems, Nat. Commun., 11
Kühne, 2020, CP2K: an electronic structure and molecular dynamics software package - quickstep: efficient and accurate electronic structure calculations, J. Chem. Phys., 152
VandeVondele, 2007, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, J. Chem. Phys., 127
Grimme, 2010, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132