In situ determination of high-temperature oxidation evolution using micro-pillar array and scanning probe microscopy
Tài liệu tham khảo
Ezugwu, 1999, The machinability of nickel-based alloys: a review, J. Mater. Process. Technol., 86, 1, 10.1016/S0924-0136(98)00314-8
Peters, 1976, Oxidation and hot corrosion of nickel-based alloys containing molybdenum, Corros. Sci., 16, 791, 10.1016/0010-938X(76)90010-X
Shao, 2019, Overview: additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life, Addit. Manuf., 29
Tatlock, 1987, High temperature degradation of nickel based alloys, Platin. Met. Rev., 31, 26
Wu, 2016, Double minimum creep of single crystal Ni-base superalloys, Acta Mater., 112, 242, 10.1016/j.actamat.2016.04.012
Antolovich, 2015, Microstructural aspects of fatigue in Ni-base superalloys, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 373
Nganbe, 2009, High temperature strength and failure of the Ni-base superalloy PM 3030, Int. J. Plast., 25, 822, 10.1016/j.ijplas.2008.06.005
Goebel, 1973, Mechanisms for the hot corrosion of nickel-base alloys, Metall. Trans., 4, 261, 10.1007/BF02649626
Li, 2003, Oxidation behavior of a single-crystal Ni-base superalloy in air. I: at 800 and 900 C, Oxid. Met., 59, 591, 10.1023/A:1023604214245
Pint, 2006, Oxidation resistance: one barrier to moving beyond Ni-base superalloys, Mater. Sci. Eng. A, 415, 255, 10.1016/j.msea.2005.09.091
Ye, 2021, Influence of Nb addition on the oxidation behavior of novel Ni-base superalloy, Corros. Sci., 185, 10.1016/j.corsci.2021.109436
Tawancy, 1994, Role of Y during high temperature oxidation of an M-Cr-Al-Y coating on an Ni-base superalloy, Surf. Coat. Technol., 68, 10, 10.1016/0257-8972(94)90130-9
Evans, 2010, Effect of surface roughness on the oxidation behavior of the Ni-base superalloy ME3, J. Mater. Eng. Perform., 19, 1001, 10.1007/s11665-010-9605-5
Pei, 2018, Influence of surface roughness on the oxidation behavior of a Ni-4.0Cr-5.7 Al single crystal superalloy, Appl. Surf. Sci., 440, 790, 10.1016/j.apsusc.2018.01.226
Tan, 2019, Steam oxidation behavior of Ni-base superalloys 690, 725 and X-750 at 600 and 650C, Corros. Sci., 157, 487, 10.1016/j.corsci.2019.06.014
Evans, 1995, Stress effects in high temperature oxidation of metals, Int. Mater. Rev., 40, 1, 10.1179/imr.1995.40.1.1
Wang, 2019, Chemo-mechanical coupling effect in the high-temperature oxidation of metal materials: a review, Sci. China Technol. Sci., 62, 1246, 10.1007/s11431-018-9500-y
Fang, 2019, Chemo-mechanical coupling effect on high temperature oxidation: a review, Sci. China Technol. Sci., 62, 1297, 10.1007/s11431-019-9527-0
Peraldi, 2002, Correlations between growth kinetics and microstructure for scales formed by high-temperature oxidation of pure nickel. II. Growth kinetics, Oxid. Met., 58, 275, 10.1023/A:1020102604090
Mrowec, 2004, Oxidation of nickel and transport properties of nickel oxide, J. Phys. Chem. Solids, 65, 1651, 10.1016/j.jpcs.2004.03.011
Xu, 2012, Metal oxidation kinetics and the transition from thin to thick films, Phys. Chem. Chem. Phys., 14, 14534, 10.1039/c2cp42760e
Zhou, 2010
Yue, 2018, Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature, J. Appl. Phys., 123, 10.1063/1.5025149
Li, 2020, Chemo-mechanical coupling effect on bidirectional diffusion process during oxidation, J. Appl. Phys., 127, 10.1063/5.0005026
Liu, 2018, Coupled chemomechanical theory with strain gradient and surface effects, Acta Mech., 229, 133, 10.1007/s00707-017-1963-8
Bian, 2015, Regulating the coarsening of the γ′ phase in superalloys, NPG Asia Mater., 7, 10.1038/am.2015.96
Graham, 1972, On the mechanism of low‐temperature oxidation (23–450C) of polycrystalline nickel, J. Electrochem. Soc., 119, 879, 10.1149/1.2404360
Sennour, 2010, A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor, J. Nucl. Mater., 402, 147, 10.1016/j.jnucmat.2010.05.010
Proff, 2010, In situ oxidation of zirconium binary alloys by environmental SEM and analysis by AFM, FIB, and TEM, J. Nucl. Mater., 404, 97, 10.1016/j.jnucmat.2010.05.012
Anton, 2009, In situ TEM investigations of reactions of Ni, Fe and Fe–Ni alloy particles and their oxides with amorphous carbon, Carbon, 47, 856, 10.1016/j.carbon.2008.11.038
Yu, 2018, In situ observations of early stage oxidation of Ni-Cr and Ni-Cr-Mo alloys, Corrosion, 74, 939, 10.5006/2807
Li, 2015, In situ measurement of oxidation evolution at elevated temperature by nanoindentation, Scr. Mater., 103, 61, 10.1016/j.scriptamat.2015.03.008
Li, 2018, In situ full-field measurement of surface oxidation on Ni-based alloy using high temperature scanning probe microscopy, Sci. Rep., 8, 1
Alexander, 2002, Quantification of oxide film thickness at the surface of aluminium using XPS, Surface and Interface Analysis: an International Journal devoted to the development and application of techniques for the analysis of surfaces, Interfaces Thin Films, 34, 485
Jeurgens, 1999, Determination of thickness and composition of aluminium-oxide overlayers on aluminium substrates, Appl. Surf. Sci., 144, 11, 10.1016/S0169-4332(98)00755-7
Leistner, 2013, Oxide film growth kinetics on metals and alloys: II. Numerical simulation of transient behavior, J. Electrochem. Soc., 160, C197, 10.1149/2.037306jes
Meyer, 2003
Sattler, 2020, vol. 3
Fang, 2016, Surface evolution at nanoscale during oxidation: a competing mechanism between local curvature effect and stress effect, J. Appl. Phys., 119, 10.1063/1.4947182
Karimi, 1986, Cavitation erosion of materials, Int. Met. Rev., 31, 1, 10.1179/imr.1986.31.1.1
Meurs, 1996, Characterization of interphase conditions in composite materials, Compos. Part A Appl. Sci. Manuf., 27, 781, 10.1016/1359-835X(96)00020-6
Mari, 1992, A new photolithographic technique to detect the local deformation of materials: application to WC-Co composites, Mater. Sci. Eng. A, 158, 203, 10.1016/0921-5093(92)90009-P
Moulart, 2007, On the realization of microscopic grids for local strain measurement by direct interferometric photolithography, Opt. Lasers Eng., 45, 1131, 10.1016/j.optlaseng.2007.06.009
Allais, 1994, Experimental characterization of the local strain field in a heterogeneous elastoplastic material, Acta Metall. Mater., 42, 3865, 10.1016/0956-7151(94)90452-9
Vignal, 2005, Mapping the 3D-surface strain field of patterned tensile stainless steels using atomic force microscopy, Ultramicroscopy, 103, 183, 10.1016/j.ultramic.2004.11.021
Panicaud, 2021, Stress determination in a thermally grown oxide on Ni38Cr alloy by use of micro/nanogauge gratings, Mater. Sci. Eng. A, 812, 10.1016/j.msea.2021.141079
Duarte, 2021, In situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach, J. Mater. Sci., 56, 8732, 10.1007/s10853-020-05749-2
Wang, 2011, Microstructure of the native oxide layer on Ni and Cr-doped Ni nanoparticles, J. Nanosci. Nanotechnol., 11, 8488, 10.1166/jnn.2011.4964
Larsson, 2022, Thickness and composition of native oxides and near-surface regions of Ni superalloys, J. Alloy. Compd., 895, 10.1016/j.jallcom.2021.162657
Tada, 2000, Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures, J. Appl. Phys., 87, 4189, 10.1063/1.373050
Shi, 2012, Isothermal oxidation behavior of single crystal superalloy DD6, Trans. Nonferrous Met. Soc. China, 22, 534, 10.1016/S1003-6326(11)61210-7
J. Kuruvilla, D. Sukumaran, A. Sankar, S.P. Joy, A review on image processing and image segmentation, in: 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE), IEEE, 2016, pp. 198–203.
Prasad, 2012, Edge curvature and convexity based ellipse detection method, Pattern Recognit., 45, 3204, 10.1016/j.patcog.2012.02.014
Nemat-Nasser, 2004
Djouda, 2017, Nanogauges gratings for strain determination at nanoscale, Mech. Mater., 114, 268, 10.1016/j.mechmat.2017.08.014
Clarke, 2003, The lateral growth strain accompanying the formation of a thermally grown oxide, Acta Mater., 51, 1393, 10.1016/S1359-6454(02)00532-3
Tolpygo, 1998, Competition between stress generation and relaxation during oxidation of an Fe-Cr-Al-Y alloy, Oxid. Met., 49, 187, 10.1023/A:1018828619028
Dong, 2013, Diffusion and stress coupling effect during oxidation at high temperature, J. Am. Ceram. Soc., 96, 44, 10.1111/jace.12105
Dong, 2014, Stress–diffusion interaction during oxidation at high temperature, Chem. Phys. Lett., 614, 95, 10.1016/j.cplett.2014.09.011
Dong, 2016, Oxidation at high temperature under three-point bending considering stress-diffusion coupling effects, Oxid. Met., 86, 125, 10.1007/s11085-016-9626-z
Rettberg, 2016, Growth stresses in thermally grown oxides on nickel-based single-crystal alloys, Metall. Mater. Trans. A, 47, 1132, 10.1007/s11661-015-3273-x
Polian, 2002, Elastic properties of a-SiO2 up to 2300 K from Brillouin scattering measurements, EPL (Europhys. Lett. ), 57, 375, 10.1209/epl/i2002-00470-4
Dong, 2012, Oxidation stress evolution and relaxation of oxide film/metal substrate system, J. Appl. Phys., 112, 10.1063/1.4736934
Tolpygo, 1998, Determination of the growth stress and strain in α-Al2O3 scales during the oxidation of Fe–22Cr–4.8 Al–0.3 Y alloy, Acta Mater., 46, 927, 10.1016/S1359-6454(97)00306-6
Skinner, 1953, Thermal expansion of zirconium between 298 K and 1600 K, J. Chem. Phys., 21, 1383, 10.1063/1.1699227
Yang, 2007, Synthesis of ZrO2/ZrW2O8 composites with low thermal expansion, Compos. Sci. Technol., 67, 1167, 10.1016/j.compscitech.2006.05.012
Evans, 1978, Perturbation of parabolic kinetics resulting from the accumulation of stress in protective oxide layers, J. Electrochem. Soc., 125, 1180, 10.1149/1.2131644
Fang, 2018, Modification of the mechanism for stress-aided grain boundary oxidation ahead of cracks, Oxid. Met., 89, 331, 10.1007/s11085-017-9789-2