In situ determination of high-temperature oxidation evolution using micro-pillar array and scanning probe microscopy

Corrosion Science - Tập 217 - Trang 111117 - 2023
Jinsong Zhang1,2, Jinyang Wang1,2, Yunlong Tang1,2, Mengkun Yue1,2, Zhe Qu3, Xufei Fang4, Xue Feng1,2
1AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
2Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
3Qiantang Science and Technology Innovation Center, Hangzhou 310000, China
4Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt 64287, Germany

Tài liệu tham khảo

Ezugwu, 1999, The machinability of nickel-based alloys: a review, J. Mater. Process. Technol., 86, 1, 10.1016/S0924-0136(98)00314-8 Peters, 1976, Oxidation and hot corrosion of nickel-based alloys containing molybdenum, Corros. Sci., 16, 791, 10.1016/0010-938X(76)90010-X Shao, 2019, Overview: additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life, Addit. Manuf., 29 Tatlock, 1987, High temperature degradation of nickel based alloys, Platin. Met. Rev., 31, 26 Wu, 2016, Double minimum creep of single crystal Ni-base superalloys, Acta Mater., 112, 242, 10.1016/j.actamat.2016.04.012 Antolovich, 2015, Microstructural aspects of fatigue in Ni-base superalloys, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 373 Nganbe, 2009, High temperature strength and failure of the Ni-base superalloy PM 3030, Int. J. Plast., 25, 822, 10.1016/j.ijplas.2008.06.005 Goebel, 1973, Mechanisms for the hot corrosion of nickel-base alloys, Metall. Trans., 4, 261, 10.1007/BF02649626 Li, 2003, Oxidation behavior of a single-crystal Ni-base superalloy in air. I: at 800 and 900 C, Oxid. Met., 59, 591, 10.1023/A:1023604214245 Pint, 2006, Oxidation resistance: one barrier to moving beyond Ni-base superalloys, Mater. Sci. Eng. A, 415, 255, 10.1016/j.msea.2005.09.091 Ye, 2021, Influence of Nb addition on the oxidation behavior of novel Ni-base superalloy, Corros. Sci., 185, 10.1016/j.corsci.2021.109436 Tawancy, 1994, Role of Y during high temperature oxidation of an M-Cr-Al-Y coating on an Ni-base superalloy, Surf. Coat. Technol., 68, 10, 10.1016/0257-8972(94)90130-9 Evans, 2010, Effect of surface roughness on the oxidation behavior of the Ni-base superalloy ME3, J. Mater. Eng. Perform., 19, 1001, 10.1007/s11665-010-9605-5 Pei, 2018, Influence of surface roughness on the oxidation behavior of a Ni-4.0Cr-5.7 Al single crystal superalloy, Appl. Surf. Sci., 440, 790, 10.1016/j.apsusc.2018.01.226 Tan, 2019, Steam oxidation behavior of Ni-base superalloys 690, 725 and X-750 at 600 and 650C, Corros. Sci., 157, 487, 10.1016/j.corsci.2019.06.014 Evans, 1995, Stress effects in high temperature oxidation of metals, Int. Mater. Rev., 40, 1, 10.1179/imr.1995.40.1.1 Wang, 2019, Chemo-mechanical coupling effect in the high-temperature oxidation of metal materials: a review, Sci. China Technol. Sci., 62, 1246, 10.1007/s11431-018-9500-y Fang, 2019, Chemo-mechanical coupling effect on high temperature oxidation: a review, Sci. China Technol. Sci., 62, 1297, 10.1007/s11431-019-9527-0 Peraldi, 2002, Correlations between growth kinetics and microstructure for scales formed by high-temperature oxidation of pure nickel. II. Growth kinetics, Oxid. Met., 58, 275, 10.1023/A:1020102604090 Mrowec, 2004, Oxidation of nickel and transport properties of nickel oxide, J. Phys. Chem. Solids, 65, 1651, 10.1016/j.jpcs.2004.03.011 Xu, 2012, Metal oxidation kinetics and the transition from thin to thick films, Phys. Chem. Chem. Phys., 14, 14534, 10.1039/c2cp42760e Zhou, 2010 Yue, 2018, Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature, J. Appl. Phys., 123, 10.1063/1.5025149 Li, 2020, Chemo-mechanical coupling effect on bidirectional diffusion process during oxidation, J. Appl. Phys., 127, 10.1063/5.0005026 Liu, 2018, Coupled chemomechanical theory with strain gradient and surface effects, Acta Mech., 229, 133, 10.1007/s00707-017-1963-8 Bian, 2015, Regulating the coarsening of the γ′ phase in superalloys, NPG Asia Mater., 7, 10.1038/am.2015.96 Graham, 1972, On the mechanism of low‐temperature oxidation (23–450C) of polycrystalline nickel, J. Electrochem. Soc., 119, 879, 10.1149/1.2404360 Sennour, 2010, A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor, J. Nucl. Mater., 402, 147, 10.1016/j.jnucmat.2010.05.010 Proff, 2010, In situ oxidation of zirconium binary alloys by environmental SEM and analysis by AFM, FIB, and TEM, J. Nucl. Mater., 404, 97, 10.1016/j.jnucmat.2010.05.012 Anton, 2009, In situ TEM investigations of reactions of Ni, Fe and Fe–Ni alloy particles and their oxides with amorphous carbon, Carbon, 47, 856, 10.1016/j.carbon.2008.11.038 Yu, 2018, In situ observations of early stage oxidation of Ni-Cr and Ni-Cr-Mo alloys, Corrosion, 74, 939, 10.5006/2807 Li, 2015, In situ measurement of oxidation evolution at elevated temperature by nanoindentation, Scr. Mater., 103, 61, 10.1016/j.scriptamat.2015.03.008 Li, 2018, In situ full-field measurement of surface oxidation on Ni-based alloy using high temperature scanning probe microscopy, Sci. Rep., 8, 1 Alexander, 2002, Quantification of oxide film thickness at the surface of aluminium using XPS, Surface and Interface Analysis: an International Journal devoted to the development and application of techniques for the analysis of surfaces, Interfaces Thin Films, 34, 485 Jeurgens, 1999, Determination of thickness and composition of aluminium-oxide overlayers on aluminium substrates, Appl. Surf. Sci., 144, 11, 10.1016/S0169-4332(98)00755-7 Leistner, 2013, Oxide film growth kinetics on metals and alloys: II. Numerical simulation of transient behavior, J. Electrochem. Soc., 160, C197, 10.1149/2.037306jes Meyer, 2003 Sattler, 2020, vol. 3 Fang, 2016, Surface evolution at nanoscale during oxidation: a competing mechanism between local curvature effect and stress effect, J. Appl. Phys., 119, 10.1063/1.4947182 Karimi, 1986, Cavitation erosion of materials, Int. Met. Rev., 31, 1, 10.1179/imr.1986.31.1.1 Meurs, 1996, Characterization of interphase conditions in composite materials, Compos. Part A Appl. Sci. Manuf., 27, 781, 10.1016/1359-835X(96)00020-6 Mari, 1992, A new photolithographic technique to detect the local deformation of materials: application to WC-Co composites, Mater. Sci. Eng. A, 158, 203, 10.1016/0921-5093(92)90009-P Moulart, 2007, On the realization of microscopic grids for local strain measurement by direct interferometric photolithography, Opt. Lasers Eng., 45, 1131, 10.1016/j.optlaseng.2007.06.009 Allais, 1994, Experimental characterization of the local strain field in a heterogeneous elastoplastic material, Acta Metall. Mater., 42, 3865, 10.1016/0956-7151(94)90452-9 Vignal, 2005, Mapping the 3D-surface strain field of patterned tensile stainless steels using atomic force microscopy, Ultramicroscopy, 103, 183, 10.1016/j.ultramic.2004.11.021 Panicaud, 2021, Stress determination in a thermally grown oxide on Ni38Cr alloy by use of micro/nanogauge gratings, Mater. Sci. Eng. A, 812, 10.1016/j.msea.2021.141079 Duarte, 2021, In situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach, J. Mater. Sci., 56, 8732, 10.1007/s10853-020-05749-2 Wang, 2011, Microstructure of the native oxide layer on Ni and Cr-doped Ni nanoparticles, J. Nanosci. Nanotechnol., 11, 8488, 10.1166/jnn.2011.4964 Larsson, 2022, Thickness and composition of native oxides and near-surface regions of Ni superalloys, J. Alloy. Compd., 895, 10.1016/j.jallcom.2021.162657 Tada, 2000, Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures, J. Appl. Phys., 87, 4189, 10.1063/1.373050 Shi, 2012, Isothermal oxidation behavior of single crystal superalloy DD6, Trans. Nonferrous Met. Soc. China, 22, 534, 10.1016/S1003-6326(11)61210-7 J. Kuruvilla, D. Sukumaran, A. Sankar, S.P. Joy, A review on image processing and image segmentation, in: 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE), IEEE, 2016, pp. 198–203. Prasad, 2012, Edge curvature and convexity based ellipse detection method, Pattern Recognit., 45, 3204, 10.1016/j.patcog.2012.02.014 Nemat-Nasser, 2004 Djouda, 2017, Nanogauges gratings for strain determination at nanoscale, Mech. Mater., 114, 268, 10.1016/j.mechmat.2017.08.014 Clarke, 2003, The lateral growth strain accompanying the formation of a thermally grown oxide, Acta Mater., 51, 1393, 10.1016/S1359-6454(02)00532-3 Tolpygo, 1998, Competition between stress generation and relaxation during oxidation of an Fe-Cr-Al-Y alloy, Oxid. Met., 49, 187, 10.1023/A:1018828619028 Dong, 2013, Diffusion and stress coupling effect during oxidation at high temperature, J. Am. Ceram. Soc., 96, 44, 10.1111/jace.12105 Dong, 2014, Stress–diffusion interaction during oxidation at high temperature, Chem. Phys. Lett., 614, 95, 10.1016/j.cplett.2014.09.011 Dong, 2016, Oxidation at high temperature under three-point bending considering stress-diffusion coupling effects, Oxid. Met., 86, 125, 10.1007/s11085-016-9626-z Rettberg, 2016, Growth stresses in thermally grown oxides on nickel-based single-crystal alloys, Metall. Mater. Trans. A, 47, 1132, 10.1007/s11661-015-3273-x Polian, 2002, Elastic properties of a-SiO2 up to 2300 K from Brillouin scattering measurements, EPL (Europhys. Lett. ), 57, 375, 10.1209/epl/i2002-00470-4 Dong, 2012, Oxidation stress evolution and relaxation of oxide film/metal substrate system, J. Appl. Phys., 112, 10.1063/1.4736934 Tolpygo, 1998, Determination of the growth stress and strain in α-Al2O3 scales during the oxidation of Fe–22Cr–4.8 Al–0.3 Y alloy, Acta Mater., 46, 927, 10.1016/S1359-6454(97)00306-6 Skinner, 1953, Thermal expansion of zirconium between 298 K and 1600 K, J. Chem. Phys., 21, 1383, 10.1063/1.1699227 Yang, 2007, Synthesis of ZrO2/ZrW2O8 composites with low thermal expansion, Compos. Sci. Technol., 67, 1167, 10.1016/j.compscitech.2006.05.012 Evans, 1978, Perturbation of parabolic kinetics resulting from the accumulation of stress in protective oxide layers, J. Electrochem. Soc., 125, 1180, 10.1149/1.2131644 Fang, 2018, Modification of the mechanism for stress-aided grain boundary oxidation ahead of cracks, Oxid. Met., 89, 331, 10.1007/s11085-017-9789-2