In situ compartmentation of creatine kinase in intact sarcomeric muscle: The acto-myosin overlap zone as a molecular sieve
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, V., Bosch, W., Schlegel, J., Wallimann, T. &Brdiczka, D. (1989) Further characterization of contact sites from mitochondria of different tissues: topology of peripheral kinases.Biochim. Biophys. Acta 981, 213–25.
Arnold, H., Henning, R. &Pette, D. (1971) Quantitative comparison of the binding of various glycolytic enzymes to F-actin and the interaction of aldolase with G-actin.Eur. J. Biochem. 22, 121–6.
Arrio-Dupont, M. (1988) An example of substrate channeling between co-immobilized enzymes. Coupled activity of myosin ATPase and creatine kinase bound to frog heart myofilaments.FEBS Lett. 240, 181–5.
Bähler, M., Eppenberger, H. M. &Wallimann, T. (1985a) Novel thick filament protein of chicken pectoralis muscle: the 86 kDa protein. I. Purification and characterization.J. Mol. Biol. 186, 381–91.
Bähler, M., Moser, H., Eppenberger, H. M. &Wallimann, T. (1985b) Heart C-protein is transiently expressed during skeletal muscle development in the embryo, but persists in cultured myogenic cells.Devel. Biol. 112, 345–52.
Bähler, M., Wallimann, T. &Eppenberger, H. M. (1985c) Myofibrillar M-band proteins represent constituents of native thick filaments, frayed filaments and bare zone assemblages.J. Muscle Res. Cell Motil. 6, 783–800.
Bartels, E. M. &Elliott, G. F. (1985) Donnan potentials from the A- and I-bands of glycerinated and chemically skinned muscles, relaxed and in rigor.Biophys. J. 48, 61–76.
Bessman, S. P. &Carpenter, C. L. (1985) The creatine-creatine phosphate energy shuttle.Ann. Rev. Biochem. 54, 831–62.
Biermans, W., Bakker, A. &Jacob, W. (1990) Contact sites between inner and outer mitochondrial membrane: a dynamic microcompartmentation for creatine kinase activity.Biochim. Biophys. Acta 1018, 225–8.
Bronstein, W. W. &Knull, H. R. (1981) Interaction of muscle glycolytic enzymes with thin filament proteins.Can. J. Biochem. 59, 494–9.
Brooks, S. P. J. &Storey, K. B. (1988) Reevaluation of the ‘glycolytic complex’ in muscle: a multitechnique approach using trout white muscle.Arch. Biochem. Biophys. 267, 13–22.
Carlsson, E., Grove, B. K., Wallimann, T., Eppenberger, H. M. &Thornell, L. E. (1990) Myofibrillar M-band proteins in rat skeletal muscles during development.Histochemistry 95, 27–35.
Dillon, P. F. &Clark, J. F. (1990) The theory of diazymes and functional coupling of pyruvate kinase and creatine kinase.J. Theor. Biol. 143, 275–84.
Dölken, G., Leisner, E. &Pette, D. (1975) Immunofluorescent localization of glycogenolytic and glycolytic enzyme proteins and of malate dehydrogenase isoenzymes in cross-striated skeletal muscle and heart of the rabbit.Histochemistry 43, 113–21.
Eisenberg, B. R., Mathias, R. T. &Gilai, A. (1979) Intracellular localization of markers within injected or cut frog muscle fibers.Am. J. Physiol. 237, C50-C55.
Eppenberger, H. M., Perriard, J. C. &Wallimann, T. (1983) Analysis of creatine kinase isozymes during muscle differentiation. InCurrent Topics in Biology and Medical Research Vol. 7: Isoenzymes (edited by Rattazzi, M., Scandalios, J. G., Whitt, G. S.) pp. 19–38. New York: Alan R. Liss.
Eppenberger-Eberhardt, M., Riesinger, I., Messerli, M., Schwarb, P., Müller, M., Eppenberger, H. M. &Wallimann, T. (1991) Adult rat heart cardiomyocytes cultured in creatine-deficient medium display large mitochondria with paracrystalline inclusions enriched for creatine kinase.J. Cell. Biol. 113, 289–302.
Erickson-Viitanen, S., Geiger, P. J., Viitanen, P. &Bessman, S. P. (1982) Compartmentation of mitochondrial creatine phosphokinase. II. The importance of the outer mitochondrial membrane for mitochondrial compartmentation.J. Biol. Chem. 257, 14 405–11.
Grosse, R., Spitzer, E., Kupriyanov, V. V., Saks, V. A. &Repke, K. R. H. (1980) Coordinate interplay between (Na+ + K+) ATPase and CK optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cells.Biochim. Biophys. Acta 603, 142–56.
Hoerter, J. A., Kuznetsov, A. &Ventura-Clapier, R. (1991) Functional development of the creatine kinase system in perinatal rabbit heart.Cir. Res. 69, 665–76.
Hoerter, J., Laver, C., Vassort, G., Gueron, M. (1988) Sustained function of normoxic hearts depleted in ATP and phosphocreatine: A31P-NMR study.Am. J. Physiol. 255, C192-C201.
Ishida, Y. &Paul, R. J. (1989) Evidence for compartmentation of high energy phosphagens in smooth muscle. InProgress in Clinical and Biological Research Vol. 315:Muscle Energetics (edited by Paul, R. J., Elzinga, G., Yamada, K.) pp. 417–28. New York: Alan R. Liss.
Jacobs, H., Heldt, H. W. &Klingenberg, M. (1964) High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase.Biochem. Biophys. Res. Commun. 16, 516–21.
Jacobus, W. E. (1985) Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.Rev. Physiol. 47, 707–25.
Jacobus, W. E. &Lehninger, A. L. (1973) Creatine kinase of rat heart mitochondria.J. Biol. Chem. 248, 4803–10.
Jacobus, W. E., Moreadith, R. W. &Vandegaer, K. M. (1983) Control of heart oxidative phosphorylation by creatine kinase in mitochondrial membranes.Ann. N.Y. Acad. Sci. 414, 73–89.
Jockers-Wretou, E., Giebel, W. &Pfleiderer, G. (1977) Immunohistochemical localization of creatine kinase isoenzymes in human tissue.Histochemistry 54, 83–97.
Kottke, M., Adams, V., Wallimann, T., Kumar-Nalam, V. &Brdiczka, D. (1991) Location and regulation of octameric mitochondrial creatine kinase in the contact sites.Biochim. Biophys. Acta 1061, 215–25.
Kuprianov, V. V., Seppet, E. K., Emelin, I. V. &Saks, V. A. (1980) Phosphocreatine production coupled to the glycolytic reactions in the cytosol of cardiac cells.Biochim. Biophys. Acta 592, 197–210.
Lenette, D. A. (1978) An improved mounting medium for immunofluorescence microscopy.Am. J. Clin. Pathol. 69, 647–8.
Levitsky, D. O., Levchenko, T. S., Saks, V. A., Sharov, V. G. &Smirnov, V. N. (1978) The role of creatine phosphokinase in supplying energy for the calcium pump system of heart sarcoplasmic reticulum.Membr. Biochem. 2, 81–96.
Masters, C. J., Reid, S. &Don, M. (1987) Glycolysis: new concepts in an old pathway.Mol. Cell. Biochem. 76, 3–14.
Matsubara, I., Goldman, Y. E. &Simmons, R. M. (1984) Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach.J. Mol. Biol. 173, 15–33.
Maughan, D. &Wegner, E. (1989) On the organization and diffusion of glycolytic enzymes in skeletal muscle. InProgress in Clinical and Biological Research Vol. 315:Muscle Energetics (edited by Paul, R. J., Elzinga, G. & Yamada, K.) pp. 137–47. New York: Alan R. Liss.
Méjean, C., Pons, F., Benyamin, Y. &Roustan, C. (1989) Antigenic probes locate binding site for the glycolytic enzymes GPDH, aldolase and PEK on the actin monomer in microfilaments.Biochem. J. 264, 671–7.
Miller, D. S. &Horowitz, S. B. (1986) Intracellular compartmentalization of adenosine triphosphate.J. Biol. Chem. 261, 13 911–15.
Meyer, R. A., Sweeney, M. L. &Kushmerick, M. J. (1984) A simple analysis of the ‘phosphocreatine shuttle’.Am. J. Physiol. 246, C365-C377.
Morel, J. E. (1985) Discussion on the state of water in the myofilament lattice and other biological systems based on the fact that the usual concept of colloid stability cannot explain the stability of the myofilament lattice.J. Theor. Biol. 112, 847–58.
Morimoto, K. &Harrington, W. F. (1972) Isolation and physical properties of an M-line protein from skeletal muscle.J. Biol. Chem. 247, 3052–3061.
Otsu, N., Hirata, M., Tuboi, S. &Miyazawa, K. (1989) Immunohistochemical localization of creatine kinase M in canine myocardial cells: most creatine kinase M is distributed in the A-band.J. Histochem. Cytochem. 37, 1465–70.
Pette, D. (1975) Some aspects of supramolecular organization of glycogenolytic and glycolytic enzymes in muscle.Acta Histochem. Suppl. XIV, 47–68.
Raap, A. K., Van Hoof, G. R. M. &Van Duijn, P. (1983) Studies on the phenazine methosulfate-tetrazolium salt capture reaction in NAD(P)-dependent dehydrogenase cytochemistry. I. Localization artefacts caused by the escape of reduced coenzyme during cytochemical reactions for NAD(P)-dependent dehydrogenases.Histochem. J. 15, 861–79.
Robert, J., Barandun, B. &Kobel, H. R. (1991) A xenopus laevis creatine kinase isozyme (CK-III/III) expressed preferentially in larval striated muscle: cDNA sequence, developmental expression and subcellular immunolocalization.Genet. Res. Camb. 58, 35–40.
Rojo, M., Hovius, R., Demel, R., Wallimann, T., Eppenberger, H. M. &Nicolay, K. (1991a) Interaction of mitochondrial creatine kinase with model membranes: a monolayer study.FEBS letters 281, 123–129.
Rojo, M., Hovius, R., Demel, R., Nicolay, K. &Wallimann, T. (1991b) Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes.J. Biol. Chem. 266, 20 290–5.
Rossi, A. M., Eppenberger, H. M., Volpe, P., Cotrufo, R. &Wallimann, T. (1990) Muscle-type MM-creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+-uptake and regulate local ATP/ADP ratios.Biol. Chem. 265, 5258–66.
Saks, V. A., Lipina, N. V., Sharov, V. G., Smirnov, V. N., Chazov, E. &Grosse, R. (1977) The localization of the MMisoenzyme of creatine kinase on the surface membrane of myocardial cells and its functional coupling to ouabaininhibited Na+/K+ ATPase.Biochim. Biophys. Acta 465, 550–8.
Saks, V. A., Rosenshtraukh, L. V., Smirnov, V. N. &Chazov, E. I. (1978) Role of creatine phosphokinase in cellular function and metabolism.Can. J. Physiol. Pharmacol. 56, 691–706.
Saks, V. A., Kupriyanov, V. V., Elizarova, G. V. &Jacobus, W. E. (1980) Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphoryl creatine production to oxidative phosphorylation.J. Biol. Chem. 255, 755–63.
Saks, V. A., Ventura-Clapier, R., Khuchua, Z. A., Preobrazhen-Sky, A. N. &Emelin, I. V. (1984) Creatine Kinase regulation of heart function and metabolism. I. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-CK systems.Biochim. Biophys. Acta 803, 254–64.
Savabi, F. (1988) Free creatine available to the creatine phosphate energy shuttle in isolated rat atria.Proceedings of the National Academy of Sciences USA 85, 7476–80.
Schlegel, J., Zurbriggen, B., Wegmann, G., Wyss, M., Eppen-Berger, H. M. &Wallimann, T. (1988a) Native mitochondrial creatine kinase (Mi-CK) forms octameric structures. I. Isolation of two interconvertible Mi-CK forms: Dimeric and octameric Mi-CK. Characterization, localization and structure-function relationships.J. Biol. Chem. 263, 16 942–53.
Schlegel, J., Wyss, M., Schürch, U., Schnyder, T., Quest, A., Wegmann, G., Eppenberger, H. M. &Wallimann, T. (1988b) Mitochondrial creatine kinase from cardiac muscle and brain are two distinct isoenzymes, but both form octameric molecules.J. Biol. Chem. 263, 16 963–9.
Schlegel, J., Wyss, M., Eppenberger, H. M. &Wallimann, T. (1990) Functional studies with the octameric and dimeric form of mitochondrial creatine kinase: differential pHdependent association of the two oligomeric forms with the inner mitochondrial membrane.J. Biol. Chem. 265, 9221–7.
Schnyder, T., Gross, H., Winkler, H. P., Eppenberger, H. M. &Wallimann, T. (1991a) Structure of the mitochondrial creatine kinase octamer: high resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions.J. Cell Biol. 112, 95–101.
Schnyder, T., Winkler, H. P., Gross, H., Eppenberger, H. M. &Wallimann, T. (1991b) Crystallization of mitochondrial creatine kinase: growing of large protein crystals and electron microscopic investigation of microcrystals consisting of octamers.J. Biol. Chem. 266, 5318–22.
Scholte, H. R. (1973) On the triple localization of creatine kinase in heart and skeletal muscle cells of the rat: evidence for the existence of myofibrillar and mitochondrial isoenzymes.Biochim. Biophys. Acta 305, 413–27.
Seraydarian, M. W. (1980) The correlation of creatine phosphate with muscle function. InHeart Creatine Kinase: the Integration of Isozymes for Energy Distribution (edited by Jacobus, W. E. & Ingwall, J. S.) pp. 82–90. Baltimore: Williams & Wilkins.
Sharov, V. G., Saks, V. A., Smirnov, V. N. &Chazov, E. I. (1977) An electron microscopic histochemical investigation of the localization of creatine kinase in heart cells.Biochim. Biophys. Acta 468, 495–501.
Spande, J. I. &Schottelius, B. A. (1970) Chemical basis of fatigue in isolated mouse soleus muscle.Am. J. Physiol. 219, 1490–5.
Stierhof, Y. D. &Schwarz, H. (1989) Labelling properties of sucrose-infiltrated cryosections.Scanning Microscopy (Suppl)3, 35–46.
Strehler, E. E., Carlsson, E., Eppenberger, H. M. &Thornell, L. E. (1983) Ultrastructural localization of M-band proteins in chicken breast muscle as revealed by combined immuno-cytochemistry and ultracryotomy.J. Mol. Biol. 166, 141–58.
Tokuyasu, K. T. (1973) Technique for ultracryotomy of cell suspensions and tissues.J. Cell Biol. 57, 551–65.
Tombes, R. M. &Shapiro, B. M. (1985) Metabolite channeling: a phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondria and tail.Cell 41, 325–34.
Turner, D. C., Wallimann, T. &Eppenberger, H. M. (1973) A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase.Proceedings of the National Academy of Sciences USA 70, 702–5.
Valnes, K. &Brandtzaeg, P. (1985) Retardation of immunofluorescence fading during microscopy.J. Histochem. Cytochem. 33, 755–61.
Van Waarde, A., Van Den Thillart, G., Erkelens, C., Addink, A. &Lugtenburg, J. (1990) Functional coupling of glycolysis and phosphocreatine utilization in anoxic fish muscle.J. Biol. Chem. 265, 914–23.
Veksler, V. I., Ven Tura-Clapier, R., Lechene, P. &Vassort, G. (1988) Functional state of myofibrils, mitochondria and bound creatine kinase in skinned ventricular fibers of cardiomyopathic hamsters.J. Mol. Cell Cardiol. 20, 329–342.
Ventura-Clapier, R., Mekhfi, H. &Vassort, G. (1987a) Role of creatine kinase in force development in chemically skinned rat cardiac muscle.J. Gen. Physiol. 89, 815–37.
Ventura-Clapier, R., Saks, V. A., Vassort, G., Lauer, C. &Eliza-Rova, G. V. (1987b) Reversible MM-creatine kinase binding to cardiac myofibrils.Am. J. Physiol. 253, C444-C455.
Vibert, P. &Cohen, C. (1988) Domains, motions and regulation in the myosin head.J. Muscle Res. Cell Motil. 9, 296–305.
Wallimann, T. &Eppenberger, H. M. (1985) Localization and function of M-line-bound creatine kinase: M-bound model and creatine phosphate shuttle. InCell and Muscle Motility (edited by Shay, L. W.), Vol. 6 pp. 239–85. New York: Plenum Publishing Co.
Wallimann, T. &Eppenberger, H. M. (1990) Subcellular compartmentation of creatine kinase isozymes as a precondition for a proposed phosphoryl-creatine circuit. InProgress in Clinical Biological Research Vol. 344:Isozymes: Structure, Function and Use in Biology and Medicine (edited by Ogita, Z. & Markert, C.) pp. 877–889. New York: Wiley-Liss.
Wallimann, T., Turner, D. C. &Eppenberger, H. M. (1977) Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle.J. Cell Biol. 75, 297–317.
Wallimann, T., Doetschman, T. C. &Eppenberger, H. M. (1983) A novel staining pattern of skeletal muscle M-lines upon incubation with monovalent antibody against creatine kinase.J. Cell Biol. 96, 1772–1779;ibid. 98, 785.
Wallimann, T., Schlösser, T. &Eppenberger, H. M. (1984) Function of M-line-bound CK as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle.J. Biol. Chem. 259, 5238–46.
Wallimann, T., Moser, H., Zurbriggen, B., Wegmann, G. &Eppenberger, H. M. (1986a) Creatine kinase isoenzymes in spermatozoa.J. Muscle Res. Cell Motil. 7, 25–34.
Wallimann, T., Wegmann, G., Moser, H., Huber, R. &Eppen-Berger, H. M. (1986b) High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells.Proceedings of the National Academy of Sciences USA 83, 3816–19.
Wallimann, T., Schnyder, T., Schlegel, J., Wyss, M., Wegmann, G., Rossi, A. M., Hemmer, W., Eppenberger, H. M. &Quest, A. F. G. (1989) Subcellular compartmentation of creatine kinase isoenzymes, regulation of CK and octameric structure of mitochondrial CK: important aspects of the phosphoryl-creatine circuit. InProgress in Clincial Biological Research Vol. 315:Muscle energetics (edited by Paul, R. J., Elzinga, G. & Yamada, K.) pp. 159–176. New York: Alan R. Liss.
Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K. &Eppen-Berger, H. M. (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the phosphocreatine circuit for cellular energy homeostasis.Biochem. J. 281, 21–40.
Wegmann, G. (1986) Identification and localization of CK isoenzymes in tissues of high energy requirements. PhD thesis No. 8164, ETH-Zürich, Switzerland.
Wegmann, G., Eppenberger, H. M. &Wallimann, T. (1987)In situ localization of creatine kinase in skeletal muscle.J. Muscle Res. Cell Motil. 8, 90A.
Wegmann, G., Huber, R., Zanolla, E., Eppenberger, H. M. &Wallimann, T. (1991) Differential expression and localization of brain-type and mitochondrial creatine kinase isoenzymes during development of the chicken retina: Mi-CK as a marker for differentiation of photoreceptor cells.Differentiation 46, 77–8.
Winegrad, S., Weisberg, A., Lin, L. E. &McClellan, G. (1989) A calcium independent on-off switch for cardiac force generators. InProgess in Clinical Biological Research Vol. 315:Muscle energetics (edited by Paul, R. J., Elzinga, G. & Yamada K.) pp. 473–9. New York: Alan R. Liss.
Wyss, M., Schlegel, J., James, P., Eppenberger, H. M. &Wallimann, T. (1990) Mitochondrial creatine kinase from chicken brain. Purification, biophysical characterization and generation of heterodimeric and heterooctameric molecules with subunits of other creatine kinase isoenzymes.J. Biol. Chem. 265, 15 900–8.
Yoshizaki, K., Watari, H. &Radda, G. (1990) Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by31P-NMR.Biochim. Biophys. Acta 1051, 144–150.