In situ and Operando Tracking of Microstructure and Volume Evolution of Silicon Electrodes by using Synchrotron X‐ray Imaging

Wiley - Tập 12 Số 1 - Trang 261-269 - 2019
Kang Dong1,2, Henning Markötter1, Fu Sun1, André Hilger1, Nikolay Kardjilov1, John Banhart1,2, Ingo Manke1
1Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
2Institute of Materials Science and Technology Technical University Berlin Hardenbergstraße 36 10623 Berlin Germany

Tóm tắt

AbstractThe internal microstructure of a silicon electrode in a lithium ion battery was visualized by operando synchrotron X‐ray radioscopy during battery cycling. The silicon particles were found to change their sizes upon lithiation and delithiation and the changes could be quantified. It was found that volume change of a particle is related to its initial size and is also largely determined by the changing surrounding electron‐conductive network and internal interface chemical environment (e.g., electrolyte migration, solid–electrolyte interphase propagation) within fractured particles. Moreover, an expansion prolongation phenomenon was discovered whereby some particles continue expanding even after switching the battery current direction and shrinkage would be expected, which is explained by assuming different expansion characteristics of particle cores and outer regions. The study provides new basic insights into processes inside Si particles during lithiation and delithiation and also demonstrates the unique possibilities of operando synchrotron X‐ray imaging for studying degradation mechanisms in battery materials.

Từ khóa


Tài liệu tham khảo

 

10.1038/451652a

10.1021/cr020731c

10.1039/b919877f

10.1002/adma.201301795

 

10.1149/1.3489378

10.1016/j.nanoen.2016.07.023

10.1016/j.jpowsour.2006.09.084

 

10.1016/j.jpowsour.2006.10.025

10.1021/acs.chemmater.7b00454

10.1021/acsami.6b00708

10.1021/acsnano.7b03942

 

10.1073/pnas.1201088109

10.1002/anie.200804355

10.1002/ange.200804355

 

10.1038/nnano.2007.411

10.1038/nnano.2012.35

 

10.1021/nl902058c

10.1002/adma.201705430

 

10.1016/j.jpowsour.2003.11.014

10.1149/1.2160429

10.1002/aenm.201300882

 

10.1039/c0jm00215a

10.1002/adfm.200900306

 

10.1021/nn901632g

10.1002/adfm.201002100

10.1002/aenm.201200158

10.1002/adma.201201601

 

10.1039/c2cc17061b

10.1002/adma.201302757

 

10.1021/acsenergylett.6b00256

10.1002/adma.201703028

 

10.1021/ja301766z

10.1021/jp1083899

10.1149/1.3111037

10.1016/j.jpowsour.2010.04.044

10.1021/nl201501s

10.1021/nn204476h

10.1016/j.elecom.2009.12.002

 

10.1016/j.jpowsour.2016.04.076

10.1016/j.jpowsour.2014.07.001

10.1038/ncomms12909

10.1038/s41467-018-04477-1

10.1016/j.jpowsour.2016.12.070

10.1016/j.electacta.2017.08.161

10.1016/j.nanoen.2018.08.009

10.1126/science.1241882

10.1016/j.jpowsour.2016.04.126

 

10.1039/C4CC03187C

10.1038/ncomms5570

10.1021/acsenergylett.6b00589

10.1038/nmat4708

10.1103/PhysRevLett.107.045503

10.1021/acsami.6b03822

10.1149/1.1556595

10.1002/cssc.201600220

10.1039/C4EE01384K

10.1016/S0168-9002(01)00466-1