In situ adsorption of itaconic acid from fermentations of Ustilago cynodontis improves bioprocess efficiency

Biotechnology for Biofuels and Bioproducts - Tập 16 - Trang 1-18 - 2023
Johannes Pastoors1, Alexander Deitert1, Carina Michel2, Karsten Günster2, Maurice Finger1, Jordy Hofstede3, Jeff Deischter4, Andreas Biselli5, Jörn Viell3, Regina Palkovits4, Andreas Jupke5, Jochen Büchs1
1AVT—Biochemical Engineering, RWTH Aachen University, Aachen, Germany
2AVT. Biochemical Engineering, RWTH Aachen University, Aachen, Germany
3AVT—Process Systems Engineering, RWTH Aachen University, Aachen, Germany
4ITMC—Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
5AVT—Fluid Process Engineering, RWTH Aachen University, Aachen, Germany

Tóm tắt

Reducing the costs of biorefinery processes is a crucial step in replacing petrochemical products by sustainable, biotechnological alternatives. Substrate costs and downstream processing present large potential for improvement of cost efficiency. The implementation of in situ adsorption as an energy-efficient product recovery method can reduce costs in both areas. While selective product separation is possible at ambient conditions, yield-limiting effects, as for example product inhibition, can be reduced in an integrated process. An in situ adsorption process was integrated into the production of itaconic acid with Ustilago cynodontis IAmax, as an example of a promising biorefinery process. A suitable feed strategy was developed to enable efficient production and selective recovery of itaconic acid by maintaining optimal glucose concentrations. Online monitoring via Raman spectroscopy was implemented to enable a first process control and understand the interactions of metabolites with the adsorbent. In the final, integrated bioprocess, yield, titre, and space–time yield of the fermentation process were increased to values of 0.41 gIA/gGlucose, 126.5 gIA/L and 0.52 gIA/L/h. This corresponds to an increase of up to 30% in comparison to the first extended batch experiment without in situ product removal. Itaconic acid was recovered with a purity of at least 95% and high concentrations above 300 g/L in the eluate. Integration of product separation via adsorption into the bioprocess was successfully conducted and improved the efficiency of itaconic acid production. Raman spectroscopy was proven to be a reliable tool for online monitoring of various metabolites and facilitated design and validation of the complex separation and feed process. The general process concept can be transferred to the production of various similar bioproducts, expanding the tool kit for design of innovative biorefinery processes.

Tài liệu tham khảo

Scarlat N, Dallemand J-F, Monforti-Ferrario F, Nita V. The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Dev. 2015;15:3–34. https://doi.org/10.1016/j.envdev.2015.03.006. Ramaswamy S. Separation and purification technologies in biorefineries. Chichester, West Sussex, United Kingdom: John Wiley & Sons Inc; 2013. Cheali P, Posada JA, Gernaey KV, Sin G. Economic risk analysis and critical comparison of optimal biorefinery concepts. Biofuels Bioprod Bioref. 2016;10:435–45. https://doi.org/10.1002/bbb.1654. Gausmann M, Kocks C, Pastoors J, Büchs J, Wierckx N, Jupke A. Electrochemical pH-T-swing separation of itaconic acid for zero salt waste downstream processing. ACS Sustain Chem Eng. 2021;9:9336–47. https://doi.org/10.1021/acssuschemeng.1c02194. van Hecke W, Kaur G, de Wever H. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade. Biotechnol Adv. 2014;32:1245–55. https://doi.org/10.1016/j.biotechadv.2014.07.003. Braga A, Silva M, Oliveira J, Silva AR, Ferreira P, Ottens M, et al. An adsorptive bioprocess for production and recovery of resveratrol with Corynebacterium glutamicum. J Chem Technol Biotechnol. 2018;93:1661–8. https://doi.org/10.1002/jctb.5538. Drabo P, Tiso T, Heyman B, Sarikaya E, Gaspar P, Förster J, et al. Anionic extraction for efficient recovery of biobased 2,3-butanediol—A platform for bulk and fine chemicals. Chemsuschem. 2017;10:3252–9. https://doi.org/10.1002/cssc.201700899. Wiehn M, Staggs K, Wang Y, Nielsen DR. In situ butanol recovery from Clostridium acetobutylicum fermentations by expanded bed adsorption. Biotechnol Prog. 2014;30:68–78. https://doi.org/10.1002/btpr.1841. Schmidt-Traub H, Schulte M, Seidel-Morgenstern A. Preparative chromatography. Weinheim, Hoboken, NJ: Wiley-VCH; John Wiley & Sons Inc; 2020. Deischter J, Müller F, Bong B, Maurer C, Hartmann SS, Palkovits R. Separation by size exclusion: selective liquid-phase adsorption of L-lysine from lysine–glucose mixtures on zeolites. ACS Sustain Chem Eng. 2022;10:10211–22. https://doi.org/10.1021/acssuschemeng.2c01874. Deischter J, Wolter N, Palkovits R. Tailoring activated carbons for efficient downstream processing: selective liquid-phase adsorption of lysine. Chemsuschem. 2020;13:3614–21. https://doi.org/10.1002/cssc.202000885. Mirata MA, Heerd D, Schrader J. Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264. Process Biochem. 2009;44:764–71. https://doi.org/10.1016/j.procbio.2009.03.013. Pastoors J, Baltin C, Bettmer J, Deitert A, Götzen T, Michel C, et al. Respiration-based investigation of adsorbent-bioprocess compatibility. Biotechnol Biofuels Bioprod. 2023. https://doi.org/10.1186/s13068-023-02297-0. Goulet KM, Saville BJ. Carbon acquisition and metabolism changes during fungal biotrophic plant pathogenesis: insights from Ustilago maydis. Can J Plant Path. 2017;39:247–66. https://doi.org/10.1080/07060661.2017.1354330. Becker F, Stehlik T, Linne U, Bölker M, Freitag J, Sandrock B. Engineering Ustilago maydis for production of tailor-made mannosylerythritol lipids. Metab Eng Commun. 2021;12:e00165. https://doi.org/10.1016/j.mec.2021.e00165. Aguilar LR, Pardo JP, Lomelí MM, Bocardo OIL, Juárez Oropeza MA, Guerra SG. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Arch Microbiol. 2017;199:1195–209. https://doi.org/10.1007/s00203-017-1388-8. Klement T, Büchs J. Itaconic acid—A biotechnological process in change. Biores Technol. 2013;135:422–31. https://doi.org/10.1016/j.biortech.2012.11.141. Willke T, Vorlop K-D. Biotechnological production of itaconic acid. Appl Microbiol Biotechnol. 2001;56:289–95. Hosseinpour Tehrani H, Saur K, Tharmasothirajan A, Blank LM, Wierckx N. Process engineering of pH tolerant Ustilago cynodontis for efficient itaconic acid production. Microb Cell Fact. 2019;18:213. https://doi.org/10.1186/s12934-019-1266-y. Becker J, Tehrani HH, Ernst P, Blank LM, Wierckx N. An optimized Ustilago maydis for itaconic acid production at maximal theoretical yield. J Fungi. 2020;7:20. https://doi.org/10.3390/jof7010020. Klement T, Milker S, Jäger G, Grande PM, Domínguez de María P, Büchs J. Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact. 2012;11:43. https://doi.org/10.1186/1475-2859-11-43. Herrero A, Gomez R, Snedecor B, Tolman C, Roberts M. Growth inhibition of Clostridium thermocellum by carboxylic acids: a mechanism based on uncoupling by weak acids. Appl Microbiol Biotechnol. 1985. https://doi.org/10.1007/BF00252157. Magalhães AI, de Carvalho JC, Medina JDC, Soccol CR. Downstream process development in biotechnological itaconic acid manufacturing. Appl Microbiol Biotechnol. 2017;101:1–12. https://doi.org/10.1007/s00253-016-7972-z. Magalhães AI, de Carvalho JC, Thoms JF, Medina JDC, Soccol CR. Techno-economic analysis of downstream processes in itaconic acid production from fermentation broth. J Clean Prod. 2019;206:336–48. https://doi.org/10.1016/j.jclepro.2018.09.204. Ortíz-de-Lira A, Reynel-Ávila HE, Díaz-Muñoz LL, Mendoza-Castillo DI, Aminabhavi TM, Badawi M, Bonilla-Petriciolet A. Sustainable downstream separation of itaconic acid using carbon-based adsorbents. Adsorpt Sci Technol. 2022;2022:1–14. https://doi.org/10.1155/2022/7333005. Schute K, Detoni C, Kann A, Jung O, Palkovits R, Rose M. Separation in biorefineries by liquid phase adsorption: itaconic acid as case study. ACS Sustainable Chem Eng. 2016;4:5921–8. https://doi.org/10.1021/acssuschemeng.6b00096. Biselli A, Echtermeyer A, Reifsteck R, Materla P, Mitsos A, Viell J, Jupke A. Investigation of the elution behavior of dissociating itaconic acid on a hydrophobic polymeric adsorbent using in-line Raman spectroscopy. J Chromatogr A. 2022;1675:463140. https://doi.org/10.1016/j.chroma.2022.463140. Echtermeyer A, Marks C, Mitsos A, Viell J. Inline Raman spectroscopy and indirect hard modeling for concentration monitoring of dissociated acid species. Appl Spectrosc. 2021;75:506–19. https://doi.org/10.1177/0003702820973275. Enejder AMK, Scecina TG, Oh J, Hunter M, Shih W-C, Sasic S, et al. Raman spectroscopy for noninvasive glucose measurements. JBO. 2005;10:31114. https://doi.org/10.1117/1.1920212. Sun X. Glucose detection through surface-enhanced Raman spectroscopy: a review. Anal Chim Acta. 2022;1206:339226. https://doi.org/10.1016/j.aca.2021.339226. Battling S, Pastoors J, Deitert A, Götzen T, Hartmann L, Schröder E, et al. Development of a novel defined minimal medium for Gluconobacter oxydans 621H by systematic investigation of metabolic demands. J Biol Eng. 2022;16:31. https://doi.org/10.1186/s13036-022-00310-y. Hosseinpour Tehrani H, Tharmasothirajan A, Track E, Blank LM, Wierckx N. Engineering the morphology and metabolism of pH tolerant Ustilago cynodontis for efficient itaconic acid production. Metab Eng. 2019;54:293–300. https://doi.org/10.1016/j.ymben.2019.05.004. Verduyn C, Postma E, Scheffers WA, van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8:501–17. https://doi.org/10.1002/yea.320080703. Geiser E, Przybilla SK, Engel M, Kleineberg W, Büttner L, Sarikaya E, et al. Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production. Metab Eng. 2016;38:427–35. https://doi.org/10.1016/j.ymben.2016.10.006. Anderlei T, Büchs J. Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J. 2001;7:157–62. https://doi.org/10.1016/s1369-703x(00)00116-9. Anderlei T, Zang W, Papaspyrou M, Büchs J. Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J. 2004;17:187–94. https://doi.org/10.1016/S1369-703X(03)00181-5. Carstensen F, Klement T, Büchs J, Melin T, Wessling M. Continuous production and recovery of itaconic acid in a membrane bioreactor. Biores Technol. 2013;137:179–87. https://doi.org/10.1016/j.biortech.2013.03.044. Alsmeyer F, Koß H-J, Marquardt W. Indirect spectral hard modeling for the analysis of reactive and interacting mixtures. Appl Spectrosc. 2004;58:975–85. Kriesten E, Alsmeyer F, Bardow A, Marquardt W. Fully automated indirect hard modeling of mixture spectra. Chemom Intell Lab Syst. 2008;91:181–93. https://doi.org/10.1016/j.chemolab.2007.11.004. Saur K, Kiefel R, Niehoff P-J, Hofstede J, Ernst P, Brockkötter J, et al. Holistic approach to process design and scale-up for itaconic acid production from crude substrates. Bioengineering. 2023. https://doi.org/10.3390/bioengineering10060723. Monod J. The growth of bacterial cultures. Annu Rev Microbiol. 1949;3:371–94. https://doi.org/10.1146/annurev.mi.03.100149.002103. Ljunggren J, Häggström L. Glutamine limited fed-batch culture reduces the overflow metabolism of amino acids in myeloma cells. Cytotechnology. 1992;8:45–56. https://doi.org/10.1007/BF02540029. Demir HT, Bezirci E, Becker J, Tehrani HH, Nikerel E, Wierck N, Türker M. High level production of itaconic acid at low pH by Ustilago maydis with fed-batch fermentation. Bioprocess Biosyst Eng. 2021;44:749–58. https://doi.org/10.1007/s00449-020-02483-6. Bansal RC, Goyal M. Activated carbon adsorption. Boca Raton: Taylor & Francis; 2005. Stodollick J, Femmer R, Gloede M, Melin T, Wessling M. Electrodialysis of itaconic acid: a short-cut model quantifying the electrical resistance in the overlimiting current density region. J Membr Sci. 2014;453:275–81. https://doi.org/10.1016/j.memsci.2013.11.008. Brown SW, Oliver SG, Harrison DEF, Righelato RC. Ethanol inhibition of yeast growth and fermentation: differences in the magnitude and complexity of the effect. Eur J Appl Microbiol Biotechnol. 1981;11:151–5. https://doi.org/10.1007/BF00511253. Luong JH. Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol Bioeng. 1985;27:280–5. https://doi.org/10.1002/bit.260270311. Osman YA, Ingram LO. Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4. J Bacteriol. 1985;164:173–80. https://doi.org/10.1128/jb.164.1.173-180.1985. Gopaliya D, Kumar V, Khare SK. Recent advances in itaconic acid production from microbial cell factories. Biocatal Agric Biotechnol. 2021;36:102130. https://doi.org/10.1016/j.bcab.2021.102130. Niehoff P-J, Müller W, Miebach K, Pastoors J, Ernst P, Hemmerich J, et al. Development of an itaconic acid production process with Ustilaginaceae on alternative feedstocks. BMC Biotechnol. 2023. https://doi.org/10.1186/s12896-023-00802-9.