In-situ K-Ar dating on Mars based on UV-Laser ablation coupled with a LIBS-QMS system: Development, calibration and application of the KArMars instrument

Chemical Geology - Tập 506 - Trang 1-16 - 2019
Fanny Cattani1, Pierre-Yves Gillot1, Xavier Quidelleur1, Anthony Hildenbrand1, Jean-Claude Lefèvre2, Claire Boukari1, Fréderic Courtade3
1GEOPS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
2Université Lyon 1, CNRS ARAR UMR 5138, Centre de datation par le radiocarbon, Villeurbanne, France
3Centre National d'Etudes Spatiales (CNES), 18 Avenue E. Belin, 31401 Toulouse, France

Tài liệu tham khảo

Anderson, 2015, Dating the Martian meteorite Zagami by the 87Rb-87Sr isochron method with a prototype in situ resonance ionization mass spectrometer, Rapid Commun. Mass Spectrom., 29, 191, 10.1002/rcm.7095 Aragon, 1999, Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser, Appl. Spectrosc., 53, 1259, 10.1366/0003702991945506 Baksi, 1996, Intercalibration of 40Ar39Ar dating standards, Chem. Geol., 129, 307, 10.1016/0009-2541(95)00154-9 Barfod, 2005, Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: a first look at Lu-Hf isotopic closure in metamorphic apatite, Geochim. Cosmochim. Acta, 69, 1847, 10.1016/j.gca.2004.09.014 Bibring, 2006, Global mineralogical and aqueous mars history derived from OMEGA/Mars express data, Science, 312, 400, 10.1126/science.1122659 Body, 2001, Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system, Spectrochim. Acta B At. Spectrosc., 56, 725, 10.1016/S0584-8547(01)00186-0 Bogard, 2009, K-Ar dating of rocks on Mars: requirements from Martian meteorite analyses and isochron modeling, Meteorit. Planet. Sci., 44, 3, 10.1111/j.1945-5100.2009.tb00713.x Bogard, 2008, 39Ar-40Ar dating of the Zagami Martian shergottite and implications for magma origin of excess 40Ar, Meteorit. Planet. Sci., 43, 1113, 10.1111/j.1945-5100.2008.tb01116.x Boynton, 2007, Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars, J. Geophys. Res., 112, 10.1029/2007JE002887 Cabalin, 1998, Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation, Spectrochim. Acta B, 53, 723, 10.1016/S0584-8547(98)00107-4 Cattani, 2017, Realization of a collection of reference minerals to develop a technique for in situ dating of the Martian rocks Cheilletz, 1992, 40Ar/39Ar ages of the Beauvoir topaze-lepidolite leucogranite and the Chedeville sodolithic pegmatite (northern Massif Central, France). Petrologic and geodynamic significance, C. R. Acad. Sci. Ser. II, 315, 329 Cho, 2018, Dating igneous rocks using the Potassium-Argon Laser Experiment (KArLE) instrument: a case study for ~380 Ma basaltic rocks, Rapid Commun. Mass Spectrom., 32, 1755, 10.1002/rcm.8214 Cho, 2013, Development of an in-situ K–Ar isochron dating method using LIBS-QMS configuration, 1505 Cho, 2015, High-precision potassium measurements using laser-induced breakdown spectroscopy under high vacuum conditions for in situ K–Ar dating of planetary surfaces, Spectrochim. Acta B At. Spectrosc., 106, 28, 10.1016/j.sab.2015.02.002 Cho, 2016, An in-situ K–Ar isochron dating method for planetary landers using a spot-by-spot laser-ablation technique, Planet. Space Sci., 128, 14, 10.1016/j.pss.2016.05.004 Christensen, 2005, Evidence for magmatic evolution and diversity on Mars from infrared observations, Nature, 436, 504, 10.1038/nature03639 Clegg, 2009, Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques, Spectrochim. Acta B At. Spectrosc., 64, 79, 10.1016/j.sab.2008.10.045 Coche, 1989, Laser-enhanced ionization detection in a laser-produced plasma at atmospheric pressure: theoretical and experimental considerations, Appl. Spectrosc., 43, 646, 10.1366/0003702894202661 Cohen, 2014, The potassium-argon laser experiment (KArLE): in situ geochronology for planetary robotic missions, Geostand. Geoanal. Res., 38, 421, 10.1111/j.1751-908X.2014.00319.x Coulié, 2004, Exploring the multicollection approach for the 40Ar/39 Ar dating technique, Geochem. Geophys. Geosyst., 5, 10.1029/2004GC000773 Courtillot, 2010, Preliminary dating of the Viluy traps (Eastern Siberia): eruption at the time of Late Devonian extinction events?, Earth Planet. Sci. Lett., 300, 239, 10.1016/j.epsl.2010.09.045 Cousin, 2017, Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars, Icarus, 288, 265, 10.1016/j.icarus.2017.01.014 Cremers, 2000, Laser-induced breakdown spectroscopy Cremers, 1983, Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry, Anal. Chem., 55, 1252, 10.1021/ac00259a017 Cremers, 2006 David, 2009, U-Pb ages (3.8–2.7 Ga) and Nd isotope data from the newly identified Eoarchean Nuvvuagittuq supracrustal belt, Superior Craton, Canada, Geol. Soc. Am. Bull., 121, 150 Davis, 2018 Devismes, 2016, KArMars: a breadboard model for in situ absolute geochronology based on the K-Ar method using UV-laser induced breakdown spectroscopy and quadrupole mass spectrometry, Geostand. Geoanal. Res., 40, 517, 10.1111/ggr.12118 Doran, 2004, Mars chronology: assessing techniques for quantifying surficial processes, Earth Sci. Rev., 67, 313, 10.1016/j.earscirev.2004.04.001 Dyar, 2011, Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples, Spectrochim. Acta B At. Spectrosc., 66, 39, 10.1016/j.sab.2010.11.016 Effenberger, 2010, Effect of atmospheric conditions on LIBS spectra, Sensors, 10, 4907, 10.3390/s100504907 El Haddad, 2014, Good practices in LIBS analysis: review and advices, Spectrochim. Acta B At. Spectrosc., 101, 171, 10.1016/j.sab.2014.08.039 Fabre, 2011, Onboard calibration igneous targets for the mars science laboratory curiosity rover and the chemistry camera laser induced breakdown spectroscopy instrument, Spectrochim. Acta B At. Spectrosc., 66, 280, 10.1016/j.sab.2011.03.012 Fabre, 2014, In situ calibration using univariate analyses based on the onboard ChemCam targets: first prediction of Martian rock and soil compositions, Spectrochim. Acta B At. Spectrosc., 99, 34, 10.1016/j.sab.2014.03.014 Farley, 2013, A double-spike method for K-Ar measurement: a technique for high precision in situ dating on Mars and other planetary surfaces, Geochim. Cosmochim. Acta, 110, 1, 10.1016/j.gca.2013.02.010 Farley, 2014, In situ radiometric and exposure age dating of the Martian surface, Science, 343, 10.1126/science.1247166 Faure, 1986 Forget, 1999 Frei, 1997, Single mineral dating by the PbPb step-leaching method: Assessing the mechanisms, Geochim. Cosmochim. Acta, 61, 393, 10.1016/S0016-7037(96)00343-2 Fuhrmann, 1987, Examination of some proposed K-Ar standards: 40Ar39Ar analyses and conventional KAr data, Chem. Geol. Isot. Geosci. Sect., 66, 41, 10.1016/0168-9622(87)90027-3 Garner, 1975, Absolute isotopic abundance ratios and the atomic weight of a reference sample of potassium, J. Res. Natl. Bur. Stand., 79A, 713, 10.6028/jres.079A.028 Gillot, 1986, The Cassignol technique for potassium-Argon dating, precision and accuracy: examples from the Late Pleistocene to Recent volcanics from southern Italy, Chem. Geol. Isot. Geosci. Sect., 59, 205, 10.1016/0168-9622(86)90072-2 Gillot, 1992, Two reference materials, trachytes MDO-G and ISH-G, for argon dating (K-Ar and 40Ar/39Ar) of Pleistocene and Holocene rocks, Geostand. Geoanal. Res., 16, 55, 10.1111/j.1751-908X.1992.tb00487.x Gillot, 2006, The K/Ar dating method: principle, analytical techniques, and application to holocene volcanic eruptions in Southern Italy, Acta Vulcanol., 18, 55 Goueguel, 2014, Effect of sodium chloride concentration on elemental analysis of brines by laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc., 68, 213, 10.1366/13-07110 Guezenoc, 2017, Variables selection: a critical issue for quantitative laser-induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc., 134, 6, 10.1016/j.sab.2017.05.009 Hartmann, 2005, Martian cratering 8: Isochron refinement and the chronology of Mars, Icarus, 174, 294, 10.1016/j.icarus.2004.11.023 Heier, 1964, The geochemistry of the alkali metals, Phys. Chem. Earth, 5, 253, 10.1016/S0079-1946(64)80007-0 Jochum, 2005, Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS, Geostand. Geoanal. Res., 29, 285, 10.1111/j.1751-908X.2005.tb00901.x Mahaffy, 2012, The sample analysis at mars investigation and instrument suite, Space Sci. Rev., 170, 401, 10.1007/s11214-012-9879-z Mahon, 1996, The New “York” regression: application of an improved statistical method to geochemistry, Int. Geol. Rev., 38, 293, 10.1080/00206819709465336 Maurice, 2012, The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: science objectives and mast unit description, Space Sci. Rev., 170, 95, 10.1007/s11214-012-9912-2 McDougall, 1999 McSween, 2004, Basaltic rocks analyzed by the Spirit Rover in Gusev Crater, Science, 305, 842, 10.1126/science.3050842 Melleton, 2011, U-Pb dating of columbite-tantalite from Variscan rare-elements granites and pegmatites, 1452 Mermet, 2008, Limit of quantitation in atomic spectrometry: an unambiguous concept?, Spectrochim. Acta B At. Spectrosc., 63, 166, 10.1016/j.sab.2007.11.029 Morgan, 2017, Instrumentation development for in situ 40Ar/39 Ar planetary geochronology, Geostand. Geoanal. Res., 41, 381, 10.1111/ggr.12170 Morris, 2016, Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater, Proc. Natl. Acad. Sci., 113, 7071, 10.1073/pnas.1607098113 Mosier-Boss, 2002, Field demonstrations of a direct push FO-LIBS metal sensor, Environ. Sci. Technol., 36, 3968, 10.1021/es020528z NIST atomic spectra electronic database Odin, 1982, Interlaboratory standards for dating purposes, 123 O'Neil, 2008, Neodymium-142 evidence for hadean mafic crust, Science, 321, 1828, 10.1126/science.1161925 Palucis, 2013, Origin and evolution of the Peace Vallis fan system that drains into the Curiosity landing area, Gale Crater, 1607 Payré, 2017, Alkali trace elements in Gale crater, Mars, with ChemCam: calibration update and geological implications, J. Geophys. Res. Planets, 122, 650, 10.1002/2016JE005201 Perez, 2011, The ChemCam instrument for the 2011 mars science laboratory mission: system requirements and performance, 6 Quidelleur, 2001, K/Ar dating extended into the last millennium: application to the youngest effusive episode of the Teide Volcano (Spain), Geophys. Res. Lett., 28, 3067, 10.1029/2000GL012821 Renne, 2010, Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology, Geochim. Cosmochim. Acta, 74, 5349, 10.1016/j.gca.2010.06.017 Ricci, 2013, New 40Ar/39Ar and K–Ar ages of the Viluy traps (Eastern Siberia): further evidence for a relationship with the Frasnian–Famennian mass extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 386, 531, 10.1016/j.palaeo.2013.06.020 Riedo, 2013, Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces, Planet. Space Sci., 87, 1, 10.1016/j.pss.2013.09.007 Rouchon, 2008, Nonspiked 40Ar and 36Ar quantification using a quadrupole mass spectrometer: a potential for K-Ar geochronology, Int. J. Mass Spectrom., 270, 52, 10.1016/j.ijms.2007.11.009 Sagna, 2017, K-Ar mineral ages and thermal history of magmatic and metamorphic Palaeoproterozoic units from the northern part of Kedougou Kenieba Inlier, West African Craton (Eastern Senegal), Geol. J., 52, 207, 10.1002/gj.2749 Sallé, 2006, Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere, Spectrochim. Acta B At. Spectrosc., 61, 301, 10.1016/j.sab.2006.02.003 Sautter, 2014, Igneous mineralogy at bradbury rise: the first chemcam campaign at gale crater, J. Geophys. Res. E Planets, 119, 30, 10.1002/2013JE004472 Schneider, 2009, 40Ar/39Ar geochronology using a quadrupole mass spectrometer, Quat. Geochronol., 4, 508, 10.1016/j.quageo.2009.08.003 Solé, 2014, In situ determination of K-Ar ages from minerals and rocks using simultaneous laser-induced plasma spectroscopy and noble gas mass spectrometry, Chem. Geol., 388, 9, 10.1016/j.chemgeo.2014.08.027 Steiger, 1977, Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology, Earth Planet. Sci. Lett., 36, 359, 10.1016/0012-821X(77)90060-7 Stipe, 2012, Quantitative laser-induced breakdown spectroscopy of potassium for in-situ geochronology on Mars, Spectrochim. Acta B At. Spectrosc., 70, 45, 10.1016/j.sab.2012.04.010 Talboys, 2009, In situ radiometric dating on Mars: investigation of the feasibility of K-Ar dating using flight-type mass and X-ray spectrometers, Planet. Space Sci., 57, 1237, 10.1016/j.pss.2009.02.012 Tucker, 2009 Tucker, 2010, Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis, Chem. Geol., 277, 137, 10.1016/j.chemgeo.2010.07.016 Vaniman, 2014, Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars, Science, 1243480–1243480, 343 Wiens, 2012, The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: body unit and combined system tests, Space Sci. Rev., 170, 167, 10.1007/s11214-012-9902-4 Wiens, 2013, Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover, Spectrochim. Acta B At. Spectrosc., 82, 1, 10.1016/j.sab.2013.02.003 Williams, 2013, Martian fluvial conglomerates at Gale Crater, Science, 340, 1068, 10.1126/science.1237317 Witze, 2014, NASA plans Mars sample-return rover, Nature, 509, 272-272, 10.1038/509272a