In situ Biofilm Quantification in Bioelectrochemical Systems by using Optical Coherence Tomography

Wiley - Tập 11 Số 13 - Trang 2171-2178 - 2018
Sam D. Molenaar1,2, Tom Sleutels2, João Pereira2, M. Iorio2, Casper Borsje1,2, Julian A. Zamudio1,2, Francisco Fabregat‐Santiago3, Cees J.N. Buisman1,2, Annemiek ter Heijne1
1Sub-department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
2Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
3Institute of Advanced Materials, Departament de Física Universitat Jaume I Av. Sos Baynat s/n 12006 Castelló de la Plana Spain

Tóm tắt

AbstractDetailed studies of microbial growth in bioelectrochemical systems (BESs) are required for their suitable design and operation. Here, we report the use of optical coherence tomography (OCT) as a tool for in situ and noninvasive quantification of biofilm growth on electrodes (bioanodes). An experimental platform is designed and described in which transparent electrodes are used to allow real‐time, 3D biofilm imaging. The accuracy and precision of the developed method is assessed by relating the OCT results to well‐established standards for biofilm quantification (chemical oxygen demand (COD) and total N content) and show high correspondence to these standards. Biofilm thickness observed by OCT ranged between 3 and 90 μm for experimental durations ranging from 1 to 24 days. This translated to growth yields between 38 and 42 mg  g −1 at an anode potential of −0.35 V versus Ag/AgCl. Time‐lapse observations of an experimental run performed in duplicate show high reproducibility in obtained microbial growth yield by the developed method. As such, we identify OCT as a powerful tool for conducting in‐depth characterizations of microbial growth dynamics in BESs. Additionally, the presented platform allows concomitant application of this method with various optical and electrochemical techniques.

Từ khóa


Tài liệu tham khảo

10.1039/c1ee02229f

10.1038/nature03661

10.1146/annurev-micro-092611-150104

10.1021/acs.estlett.6b00051

10.1021/es204126r

10.1021/es0605016

10.1021/es801553z

10.1016/j.tibtech.2015.01.007

10.1038/nrmicro2422

10.1126/science.1217412

10.1021/es801763g

10.1016/j.tibtech.2010.10.001

10.1016/j.bios.2010.11.049

10.1016/j.bios.2010.09.005

10.1002/cphc.201100865

10.1002/cssc.201100734

10.1021/es062611i

10.1016/j.copbio.2008.10.005

10.1073/pnas.0710525105

10.1002/bit.21821

10.3389/fmicb.2015.00575

10.1016/j.bioelechem.2015.04.002

10.1016/j.biortech.2014.08.096

10.1002/cssc.201100604

10.1016/j.tibtech.2008.04.008

10.1002/cssc.201100732

10.1007/s00253-007-1327-8

10.1021/es903758m

10.1038/ismej.2012.42

10.1186/1471-2180-10-98

10.1016/j.biortech.2011.09.078

10.1016/j.watres.2007.04.009

10.1016/j.biortech.2010.06.156

10.1016/j.tibtech.2008.04.003

10.4155/bfs.10.25

Khan M. R., 2016, MATEC Web of Conferences, 04002

10.1021/acs.est.5b03821

10.1039/C6TA02036D

10.1016/j.bioelechem.2011.12.002

10.3390/ijms18010204

10.1039/B816445B

10.1111/j.1365-2672.2006.02923.x

10.1007/s00253-003-1412-6

10.1016/S0076-6879(99)10011-9

10.1111/j.1574-6941.2010.00837.x

10.1016/j.ibiod.2011.11.015

10.1021/acs.analchem.6b03909

10.1039/c2ee03374g

10.1126/science.1957169

10.1016/j.watres.2014.09.006

10.1016/j.electacta.2008.03.032

10.1021/es901939r

Deutsche Sammlung von Mikroorganismen und Zellkulturen 141. Methanogenium Medium (H2/CO2) https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium141.pdf (accessed 20 February 2018).

10.1080/10934529.2010.506116

10.1016/j.fuel.2009.10.022