In silico identification of novel PrfA inhibitors to fight listeriosis: A virtual screening and molecular dynamics studies
Tài liệu tham khảo
Leclercq, 2019, Listeria thailandensis sp. nov, Int. J. Syst. Evol. Microbiol., 69, 74, 10.1099/ijsem.0.003097
Weller, 2015, Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA, Int. J. Syst. Evol. Microbiol., 65, 286, 10.1099/ijs.0.070839-0
Vázquez-Boland, 2001, Listeria pathogenesis and molecular virulence determinants, Clin. Microbiol. Rev., 14, 584, 10.1128/CMR.14.3.584-640.2001
Disson, 2012, Targeting of the central nervous system by Listeria monocytogenes, Virulence, 3, 213, 10.4161/viru.19586
European Food Safety, 2017, The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016, EFSA J., 15, e05077
National Institute of Communicable diseases
Chen, 2015, Prevalence, enumeration, and pheno- and genotypic characteristics of Listeria monocytogenes isolated from raw foods in South China, Front. Microbiol., 6, 10.3389/fmicb.2015.01026
Roberts, 1996, Transferable erythromycin resistance in Listeria spp. isolated from food, Appl. Environ. Microbiol., 62, 269, 10.1128/AEM.62.1.269-270.1996
Purwati, 2001, Plasmid-Mediated streptomycin resistance of Listeria monocytogenes, Malays. J. Med. Sci.: MJMS, 8, 59
Freitag, 1993, Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread, Infect. Immun., 61, 2537, 10.1128/IAI.61.6.2537-2544.1993
Chakraborty, 1992, Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene, J. Bacteriol., 174, 568, 10.1128/JB.174.2.568-574.1992
Leimeister-Wächter, 1990, Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of listeria monocytogenes, Proc. Natl. Acad. Sci. U.S.A., 87, 8336, 10.1073/pnas.87.21.8336
de las Heras, 2011, Regulation of Listeria virulence: PrfA master and commander, Curr. Opin. Microbiol., 14, 118, 10.1016/j.mib.2011.01.005
Krypotou, 2019, Control of bacterial virulence through the peptide signature of the habitat, Cell Rep., 26, 1815, 10.1016/j.celrep.2019.01.073
Sheehan, 1995, Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator, J. Bacteriol., 177, 6469, 10.1128/JB.177.22.6469-6476.1995
Kulén, 2018, Structure-based design of inhibitors targeting PrfA, the master virulence regulator of Listeria monocytogenes, J. Med. Chem., 61, 4165, 10.1021/acs.jmedchem.8b00289
Eiting, 2005, The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increases DNA-binding affinity by stabilizing the HTH motif, Mol. Microbiol., 56, 433, 10.1111/j.1365-2958.2005.04561.x
Good, 2016, Attenuating Listeria monocytogenes virulence by targeting the regulatory protein PrfA, Cell Chem. Biol., 23, 404, 10.1016/j.chembiol.2016.02.013
Hall, 2016, Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in Listeria, Proc. Natl. Acad. Sci. Unit. States Am., 113, 14733, 10.1073/pnas.1614028114
Reniere, 2015, Glutathione activates virulence gene expression of an intracellular pathogen, Nature, 517, 170, 10.1038/nature14029
Wang, 2017, Structural insights into glutathione-mediated activation of the master regulator PrfA in Listeria monocytogenes, Protein & Cell, 8, 308, 10.1007/s13238-017-0390-x
Ripio, 1997, A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes, J. Bacteriol., 179, 1533, 10.1128/JB.179.5.1533-1540.1997
Sterling, 2015, Zinc 15 – ligand discovery for everyone, J. Chem. Inf. Model., 55, 2324, 10.1021/acs.jcim.5b00559
Kim, 2019, PubChem 2019 update: improved access to chemical data, Nucleic Acids Res., 47, D1102, 10.1093/nar/gky1033
Li, 2016, USR-VS: a web server for large-scale prospective virtual screening using ultrafast shape recognition techniques, Nucleic Acids Res., 44, W436, 10.1093/nar/gkw320
Sunseri, 2016, Pharmit: interactive exploration of chemical space, Nucleic Acids Res., 44, W442, 10.1093/nar/gkw287
Ballester, 2007, Ultrafast shape recognition for similarity search in molecular databases, Proc. Math. Phys. Eng. Sci., 463, 1307
Schreyer, 2012, USRCAT: real-time ultrafast shape recognition with pharmacophoric constraints, J. Cheminf., 4, 27, 10.1186/1758-2946-4-27
O’Boyle, 2011, Open Babel: an open chemical toolbox, J. Cheminf., 3, 33, 10.1186/1758-2946-3-33
Trott, 2010, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem., 31, 455
Sali, 1993, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol., 234, 779, 10.1006/jmbi.1993.1626
Pettersen, 2004, UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084
Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graph., 14, 27
Molinspiration
Spoel, 2005, GROMACS: fast, flexible, and free, J. Comput. Chem., 26, 1701, 10.1002/jcc.20291
Zoete, 2011, SwissParam: a fast force field generation tool for small organic molecules, J. Comput. Chem., 32, 2359, 10.1002/jcc.21816
Huang, 2011, The free energy landscape of small molecule unbinding, PLoS Comput. Biol., 7, 10.1371/journal.pcbi.1002002
Davies, 2010, Origins and evolution of antibiotic resistance, Microbiol. Mol. Biol. Rev., 74, 417, 10.1128/MMBR.00016-10
Medina, 2016, Tackling threats and future problems of multidrug-resistant bacteria, 3
Baptista, 2018, Nano-strategies to fight multidrug resistant bacteria—“A battle of the titans, Front. Microbiol., 9, 10.3389/fmicb.2018.01441
Rai, 2013, Recent advances in antibacterial drugs, Int. J. Appl. Basic Med. Res., 3, 3, 10.4103/2229-516X.112229
Allen, 2014, Targeting virulence: can we make evolution-proof drugs?, Nat. Rev. Microbiol., 12, 300, 10.1038/nrmicro3232
León, 2020, Granzyme B attenuates bacterial virulence by targeting secreted factors, iScience, 23, 10.1016/j.isci.2020.100932
Sandri, 2018, Inhibition of Pseudomonas aeruginosa secreted virulence factors reduces lung inflammation in CF mice, Virulence, 9, 1008, 10.1080/21505594.2018.1489198
Marini, 2018, Attenuation of Listeria monocytogenes virulence by Cannabis sativa L. Essential oil, Front. Cell Infect. Microbiol., 8, 10.3389/fcimb.2018.00293