In silico analysis of promoter regions to identify regulatory elements in TetR family transcriptional regulatory genes of Mycobacterium colombiense CECT 3035
Tóm tắt
Mycobacterium colombiense is an acid-fast, non-motile, rod-shaped mycobacterium confirmed to cause respiratory disease and disseminated infection in immune-compromised patients, and lymphadenopathy in immune-competent children. It has virulence mechanisms that allow them to adapt, survive, replicate, and produce diseases in the host. To tackle the diseases caused by M. colombiense, understanding of the regulation mechanisms of its genes is important. This paper, therefore, analyzes transcription start sites, promoter regions, motifs, transcription factors, and CpG islands in TetR family transcriptional regulatory (TFTR) genes of M. colombiense CECT 3035 using neural network promoter prediction, MEME, TOMTOM algorithms, and evolutionary analysis with the help of MEGA-X. The analysis of 22 protein coding TFTR genes of M. colombiense CECT 3035 showed that 86.36% and 13.64% of the gene sequences had one and two TSSs, respectively. Using MEME, we identified five motifs (MTF1, MTF2, MTF3, MTF4, and MTF5) and MTF1 was revealed as the common promoter motif for 100% TFTR genes of M. colombiense CECT 3035 which may serve as binding site for transcription factors that shared a minimum homology of 95.45%. MTF1 was compared to the registered prokaryotic motifs and found to match with 15 of them. MTF1 serves as the binding site mainly for AraC, LexA, and Bacterial histone-like protein families. Other protein families such as MATP, RR, σ-70 factor, TetR, LytTR, LuxR, and NAP also appear to be the binding candidates for MTF1. These families are known to have functions in virulence mechanisms, metabolism, quorum sensing, cell division, and antibiotic resistance. Furthermore, it was found that TFTR genes of M. colombiense CECT 3035 have many CpG islands with several fragments in their CpG islands. Molecular evolutionary genetic analysis showed close relationship among the genes. We believe these findings will provide a better understanding of the regulation of TFTR genes in M. colombiense CECT 3035 involved in vital processes such as cell division, pathogenesis, and drug resistance and are likely to provide insights for drug development important to tackle the diseases caused by this mycobacterium. We believe this is the first report of in silico analyses of the transcriptional regulation of M. colombiense TFTR genes.
Tài liệu tham khảo
Lahiri A, Sanchini A, Semmler T, Schafer H, Lewin A (2014) Identification and comparative analysis of a genomic island in Mycobacterium avium subsp. hominissuis. FEBS Let 588(21):3906–3911. https://doi.org/10.1016/j.febslet.2014.08.037
Gonzalez-Perez MN, Murcia MI, Parra-Lopez C, Blom J, Tauch A (2016) Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense. New Microbe New Infect 14:98–105. https://doi.org/10.1016/j.nmni.2016.09.007
Maya-Hoyos M, Leguizamon J, Marino-Ramirez L, Soto CY (2015) Sliding motility, biofilm formation, and Glycopeptidolipid production in Mycobacterium colombiense strains. Biomed Res Int 2015:419549. https://doi.org/10.1155/2015/419549
Gcebe N, Hlokwe TM (2017) Non-tuberculous mycobacteria in south African wildlife: neglected pathogens and potential impediments for bovine tuberculosis diagnosis. Front Cell Infect Microbiol 7:15. https://doi.org/10.3389/fcimb.2017.00015
Gonzalez-Perez M, Marino-Ramirez L, Parra-Lopez CA, Murcia MI, Marquina B, Mata-Espinoza D (2013) Virulence and immune response induced by Mycobacterium avium complex strains in a model of progressive pulmonary tuberculosis and subcutaneous infection in BALB/c mice. Infect Immun 81(11):4001–4012. https://doi.org/10.1128/IAI.00150-13
Nishiuchi Y, Iwamoto T, Maruyama F (2017) Infection sources of a common non-tuberculous mycobacterial pathogen, Mycobacterium avium complex. Front Med 4:27. https://doi.org/10.3389/fmed.2017.00027
Al-Mahruqi SH, van Ingen J, Al Busaidy S, Boeree MJ, Al Zadjali S, Patel A, Richard Dekhuijzen PN, van Soolingen D (2009) Clinical relevance of nontuberculous mycobacteria, Oman. Emerg Infect Dis 15(2):292–294. https://doi.org/10.3201/eid1502.080977
Baldwin SL, Larsen SE, Ordway D, Cassell G, Coler RN (2019) The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl Trop Dis 13(2):e0007083. https://doi.org/10.1371/journal.pntd.0007083
Maurya AK, Nag VL, Kant S, Kushwaha RA, Kumar M, Singh AK, Dhole TN (2015) Prevalence of nontuberculous mycobacteria among extrapulmonary tuberculosis cases in tertiary care centers in northern India. Biomed Res Int 2015:465403. https://doi.org/10.1155/2015/465403
Sharma P, Singh D, Sharma K, Verma S, Mahajan S, Kanga A (2018) Are we neglecting nontuberculous mycobacteria just as laboratory contaminants? Time to reevaluate things. J Pathog 2018:8907629. https://doi.org/10.1155/2018/8907629
Gonzalez-Perez M, Murcia MI, Landsman D, Jordan IK, Marino-Ramírez L (2011) Genome sequence of the Mycobacterium colombiense type strain, CECT 3035. J Bacteriol 193(20):5866–5867. https://doi.org/10.1128/JB.05928-11
Maurer FP, Pohle P, Kernbach M et al (2019) Differential drug susceptibility patterns of Mycobacterium chimaera and other members of the Mycobacterium avium-intracellulare complex. Clin Microbiol Infect 25(3):371–379. https://doi.org/10.1016/j.cmi.2018.06.0108
Saxena S, Spaink HP, Forn-Cuni G (2021) Drug resistance in nontuberculous mycobacteria: mechanisms and models. Biology 10:96. https://doi.org/10.3390/biology10020096
Cuthbertson L, Nodwell JR (2013) The TetR family of regulators. Microbiol Mol Biol Rev 77(3):440–475. https://doi.org/10.1128/MMBR.00018-13
Colclough AL, Scadden J, Blair JMA (2019) TetR-family transcription factors in gram-negative bacteria: conservation, variation and implications for efflux-mediated antimicrobial resistance. BMC Genomics 20:731. https://doi.org/10.1186/s12864-019-6075-5
Balhana RJ, Singla A, Sikder MH, Withers M, Kendall SL (2015) Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions. BMC Genomics 16(1):479. https://doi.org/10.1186/s12864-015-1696-9
Soutourina O, Dubois T, Monot M, Shelyakin PV, Saujet L, Boudry P, Gelfand MS, Dupuy B, Martin-Verstraete I (2020) Genome-wide transcription start site mapping and promoter assignments to a sigma factor in the human enteropathogen Clostridioides difficile. Front Microbiol 11(1939):1–24. https://doi.org/10.3389/fmicb.2020.01939
Reese MG, Harris NL, Eeckman FH (1996) Large scale sequencing specific neural networks for promoter and splice site recognition. In: Bio - computing: proceedings of the 1996 Pacific symposium, Singapore http://www.fruitfly.org/seq_tools/promoter.html
Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36 https://www.osti.gov/biblio/377124
Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43(W1):39–49. https://doi.org/10.1093/nar/gkv416
Peng S, Cheng M, Huang K (2018) Efficient computation of motif discovery on Intel many integrated Core (MIC) architecture. BMC Bioinformatics 19(282):102–121. https://doi.org/10.1186/s12859-018-2276-1
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS (2007) Quantifying similarity between motifs. Genome Biol 8:R24. https://doi.org/10.1186/gb-2007-8-2-r24
Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99:3740–3745. https://doi.org/10.1073/pnas.052410099
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035. https://doi.org/10.1073/pnas.0404206101
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096
Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30(5):1229–1235. https://doi.org/10.1093/molbev/mst012
Prados J, Linder P, Redder P (2016) TSS-EMOTE, a refined protocol for a more complete and less biased global mapping of transcription start sites in bacterial pathogens. BMC Genomics 17(1):849. https://doi.org/10.1186/s12864-016-3211-3
Boutard M, Ettwiller L, Cerisy T, Alberti A, Labadie K, Salanoubat M, Schildkraut I, Tolonean AC (2016) Global repositioning of transcription start sites in a plant-fermenting bacterium. Nat Commun 7(13783):1–9. https://doi.org/10.1038/ncomms13783
Jorjani H, Zavolan M (2014) TSSer: an automated method to identify transcription start sites in prokaryotic genomes from differential RNA sequencing data. Bioinformatics 30(7):971–974. https://doi.org/10.1093/bioinformatics/btt752
Mendoza-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L, Taboada B et al (2009) Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PLoS One 4(10):e7526. https://doi.org/10.1371/journal.pone.0007526
Umarov V, Solovyev R (2017) Prediction of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One 12:2. https://doi.org/10.1371/journal.pone.0171410
Richard M, Gutiérrez AV, Viljoen AJ, Ghigo E, Blaise M, Kremer L (2018) (2018) mechanistic and structural insights into the unique TetR-dependent regulation of a drug efflux pump in Mycobacterium abscessus. Front Microbiol 9:649. https://doi.org/10.3389/fmicb.2018.00649
Gordon JJ, Towsey MW, Hogan JM, Mathews SA, Timms P (2006) Improved prediction of bacterial transcription start sites. Bioinformatics 22(2):142–148. https://doi.org/10.1093/bioinformatics/bti771
Shin MK, Shin SJ (2021) Genetic involvement of Mycobacterium avium complex in the regulation and manipulation of innate immune functions of host cells. Int J Mol Sci 22:3011. https://doi.org/10.3390/ijms22063011
Falkinham JO III (2018) Challenges of NTM drug development. Front Microbiol 9:1613. https://doi.org/10.3389/fmicb.2018.01613
Huang Y, Chen Y, Zhang LH (2020) The roles of microbial cell-cell chemical communication systems in the modulation of antimicrobial resistance. Antibiotics (Basel) 9(11):779. https://doi.org/10.3390/antibiotics9110779
Faria S, Joao I, Jordao L (2015) General overview on nontuberculous mycobacteria, biofilms, and human infection. J Pathog 2015:809014. https://doi.org/10.1155/2015/809014
Simoes M (2011) Antimicrobial strategies effective against infectious bacterial biofilms. Curr Med Chem 18(14):2129–2145. https://doi.org/10.2174/092986711795656216
Dong YH, Zhang XF, Xu JL, Tan AT, Zhang LH (2005) VqsM, a novel AraC-type global regulator of quorum-sensing signalling and virulence in Pseudomonas aeruginosa. Mol Microbiol 58(2):552–564. https://doi.org/10.1111/j.1365-2958.2005.04851.x
Wang Y, Gao L, Rao X, Wang J, Yu H, Jiang J, Zhou W, Wang J, Xiao Y, Li M, Zhang Y, Zhang K, Shen L, Hua Z (2018) Characterization of lasR-deficient clinical isolates of Pseudomonas aeruginosa. Sci Rep 8(1):13344. https://doi.org/10.1038/s41598-018-30813-y
Lade H, Paul D, Kweon JH (2014) Quorum quenching mediated approaches for control of membrane biofouling Int. J Biol Sci 10(5):550–565. https://doi.org/10.7150/ijbs.9028
De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE 3rd (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97(3):1252–1257. https://doi.org/10.1073/pnas.97.3.1252
Kopinˇc R, Lapanje A (2012) Antibiotic susceptibility profile of Mycobacterium avium subspecies hominissuis is altered in low-iron conditions. J Antimicrob Chemother 67(12):2903–2907. https://doi.org/10.1093/jac/dks313
Leoni L, Orsi N, Lorenzo V, Visca P (2000) Functional analysis of PvdS, an iron starvation sigma factor of Pseudomonas aeruginosa. J Bacteriol 182(6):1481–1491. https://doi.org/10.1128/JB.182.6.1481-1491.2000
Lizewski SE, Lundberg DS, Schurr MJ (2002) The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect Immun 70(11):6083–6093. https://doi.org/10.1128/IAI.70.11.6083-6093.2002
Li Y, Xiao Y, Zou L, Chen G (2012) Identification of HrpX regulon genes in Xanthomonas oryzae pv. Oryzicola using a GFP visualization technique. Arch Microbiol 194(4):281–291. https://doi.org/10.1007/s00203-011-0758-x
Nguyen Le Minh P, de Cima S, Bervoets I, Maes D, Rubio V, Charlier D (2015) Ligand binding specificity of RutR, a member of the TetR family of transcription regulators in Escherichia coli. FEBS Open Bio 5:76–84. https://doi.org/10.1016/j.fob.2015.01.002
Lu CD, Yang Z, Li W (2004) Transcriptome analysis of the ArgR regulon in Pseudomanas aeruginosa. J Bacteriol 186(12):3855–3861. https://doi.org/10.1128/JB.186.12.3855-3861.2004
Silva-Rocha R, Chavarría M, Kleijn RJ, Sauer U, de Lorenzo V (2013) The IHF regulon of exponentially growing pseudomonas putida cells. Environ Microbiol 15(1):49–63. https://doi.org/10.1111/j.1462-2920.2012.02750.x
Mercier R, Petit MA, Schbath S, Karoui ME, Boccard F, Espeli O (2008) The MatP/mats site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 135(3):475–485. https://doi.org/10.1016/j.cell.2008.08.031
Spencer W, Siam R, Ouimet MC, Bastedo DP, Marczynski GT (2009) CtrA, a global response regulator, uses a distinct second category of weak DNA binding sites for cell cycle transcription control in Caulobacter crescentus. J Bacteriol 191(17):5458–5470. https://doi.org/10.1128/JB.00355-09
Silber N, de Opitz CLM, Mayer C, Sass P (2020) Cell division protein Ftsz: from structure and mechanism to antibiotic target. Future Microbiol 15(9):348. https://doi.org/10.2217/fmb-2019-0348
Adikesavan AK, Katsonis P, Marciano DC, Lua R, Herman C, Lichtarge O (2011) Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites. PLoS Genet 7(9):1–14. https://doi.org/10.1371/journal.pgen.1002244
Mo CY, Manning SA, Roggiani M, Culyba MJ, Samuels AN, Sriegowski PD, Goulian M, Kohli RM (2016) Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics. mSphere 1(4):e00163–e00116. https://doi.org/10.1128/mSphere.00163-16
Kakumani R, Ahmad O, Devabhaktuni V (2012) Identification of CpG islands in DNA sequences using statistically optimal null filters. EURASTP J Bioinform Syst Biol 2012(1):12. https://doi.org/10.1186/1687-4153-2012-12
Lim WJ, Kim KH, Kim JY, Jeong S, Kim N (2019) Identification of DNA-methylated CpG islands associated with gene silencing in the adult body tissues of the Ogye chicken using RNA-Seq and reduced representation bisulfite sequencing. Front Genet 10:346. https://doi.org/10.3389/fgene.2019.00346
Yirgu M, Kebede M (2019) Analysis of the promoter region, motif and CpG islands in AraC family transcriptional regulator ACP92 genes of Herbaspirillum seropedicae. Adv Biosci Biotechnol 10:150–164. https://doi.org/10.4236/abb.2019.106011
Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42:287–299. https://doi.org/10.1146/annurev.genet.42.110807.091442
Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42. https://doi.org/10.1038/nrg2899
Murcia MI, Tortoli E, Menendez C, Palenque E, Garcia MJ (2006) Mycobacterium colombiense sp. nov., a novel member of the Mycobacterium avium complex and description of MAC-X as a new ITS genetic variant. Int J Syst Evol Microbiol 56(9):2049–2054. https://doi.org/10.1099/ijs.0.64190-0