In silico analysis of ChtBD3 domain to find its role in bacterial pathogenesis and beyond

Microbial Pathogenesis - Tập 110 - Trang 519-526 - 2017
Seema Patel1, Abdur Rauf2, Biswa Ranjan Meher3
1Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA
2Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
3Centre for Life Sciences, Central University of Jharkhand, Brambe, Ranchi, 835205, Jharkhand, India

Tài liệu tham khảo

Tran, 2011, Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation, Histol. Histopathol., 26, 1453 Javed, 2013, Chitinases: an update, J. Pharm. Bioallied Sci., 5, 21, 10.4103/0975-7406.106559 Hamid, 2013, Chitinases: an update, J. Pharm. Bioallied Sci., 5, 21, 10.4103/0975-7406.106559 Itakura, 2017, Sugar-binding profiles of chitin-binding lectins from the hevein family: a comprehensive study, Int. J. Mol. Sci., 18, 1160, 10.3390/ijms18061160 Fadel, 2016, X-Ray crystal structure of the full length human chitotriosidase (CHIT1) reveals features of its chitin binding domain, PLoS One, 11, e0154190, 10.1371/journal.pone.0154190 Tetreau, 2015, Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects, Insect Biochem. Mol. Biol., 62, 127, 10.1016/j.ibmb.2014.12.002 Tjoelker, 2000, Structural and functional definition of the human chitinase chitin-binding domain, J. Biol. Chem., 275, 514, 10.1074/jbc.275.1.514 Folders, 2001, Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein, J. Bacteriol., 183, 7044, 10.1128/JB.183.24.7044-7052.2001 Watanabe, 1994, The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation, J. Bacteriol., 176, 4465, 10.1128/jb.176.15.4465-4472.1994 Zhan, 2015, Three-dimensional (3D) structure prediction and function analysis of the chitin-binding domain 3 protein HD73_3189 from Bacillus thuringiensis HD73, Biomed. Mater. Eng., 26, S2019 Svitil, 1998, A chitin-binding domain in a marine bacterial chitinase and other microbial chitinases: implications for the ecology and evolution of 1,4-beta-glycanases, Microbiology, 144, 1299, 10.1099/00221287-144-5-1299 Mine, 2014, Solution structure of the chitin-binding domain 1 (ChBD1) of a hyperthermophilic chitinase from Pyrococcus furiosus, J. Biochem., 155, 115, 10.1093/jb/mvt104 Tsujibo, 2002, Identification and characterization of the gene cluster involved in chitin degradation in a marine bacterium, Alteromonas sp strain O-7, Appl. Environ. Microbiol., 68, 263, 10.1128/AEM.68.1.263-270.2002 Tsujibo, 2003, Characterization of chitinase genes from an alkaliphilic actinomycete, Nocardiopsis prasina OPC-131, Appl. Environ. Microbiol., 69, 894, 10.1128/AEM.69.2.894-900.2003 Ikegami, 2000, Solution structure of the chitin-binding domain of Bacillus circulans WL-12 chitinase A1, J. Biol. Chem., 275, 13654, 10.1074/jbc.275.18.13654 Hager, 2006, Type IV pili-mediated secretion modulates Francisella virulence, Mol. Microbiol., 62, 227, 10.1111/j.1365-2958.2006.05365.x Takeo, 2009, Enzymatic characterization of the Plasmodium vivax chitinase, a potential malaria transmission-blocking target, Parasitol. Int., 58, 243, 10.1016/j.parint.2009.05.002 Zhou, 2017, Preliminary characterization of putative structural cuticular proteins in the malaria vector Anopheles sinensis, Pest Manag. Sci., 10.1002/ps.4649 Martínez-Caballero, 2014, Comparative study of two GH19 chitinase-like proteins from Hevea brasiliensis, one exhibiting a novel carbohydrate-binding domain, FEBS J., 281, 4535, 10.1111/febs.12962 Crasson, 2017, Human chitotriosidase: catalytic domain or carbohydrate binding module, Who's leading HCHT's biological function, Sci. Rep., 7, 2768, 10.1038/s41598-017-02382-z Ujita, 2003, Carbohydrate binding specificity of the recombinant chitin-binding domain of human macrophage chitinase, Biosci. Biotechnol. Biochem., 67, 2402, 10.1271/bbb.67.2402 Levitz, 2010, Innate recognition of fungal cell walls, PLoS Pathog., 6, e1000758, 10.1371/journal.ppat.1000758 Patel, 2017, Chitin and chitinase: role in pathogenicity, allergenicity and health, Int. J. Biol. Macromol., 97, 331, 10.1016/j.ijbiomac.2017.01.042 Messina, 2014, Global spread of dengue virus types: mapping the 70 year history, Trends Microbiol., 22, 138, 10.1016/j.tim.2013.12.011 Shen, 2015, The correlation between chitin and acidic mammalian chitinase in animal models of allergic asthma, Int. J. Mol. Sci., 16, 27371, 10.3390/ijms161126033 Uni, 2012, Mutational analysis of a CBM family 5 chitin-binding domain of an alkaline chitinase from Bacillus sp J813, Biosci. Biotechnol. Biochem., 76, 530, 10.1271/bbb.110835 Ferrandon, 2003, A single surface tryptophan in the chitin-binding domain from Bacillus circulans chitinase A1 plays a pivotal role in binding chitin and can be modified to create an elutable affinity tag, Biochim. Biophys. Acta, 1621, 31, 10.1016/S0304-4165(03)00029-1 Orikoshi, 2005, Roles of four chitinases (chia, chib, chic, and chid) in the chitin degradation system of marine bacterium Alteromonas sp strain O-7, Appl. Environ. Microbiol., 71, 1811, 10.1128/AEM.71.4.1811-1815.2005 Ponting, 1999, SMART: identification and annotation of domains from signalling and extracellular protein sequences, Nucleic Acids Res., 27, 229, 10.1093/nar/27.1.229 Rao, 1998, Molecular and biotechnological aspects of microbial proteases, Microbiol. Mol. Biol. Rev., 62, 597, 10.1128/MMBR.62.3.597-635.1998 Ekici, 2008, Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration, Protein Sci., 17, 2023, 10.1110/ps.035436.108 Uriarte, 2008, Comparison of proteins expressed on secretory vesicle membranes and plasma membranes of human neutrophils, J. Immunol., 180, 5575, 10.4049/jimmunol.180.8.5575 Nickerson, 2007, Activation of the SspA serine protease zymogen of Staphylococcus aureus proceeds through unique variations of a trypsinogen-like mechanism and is dependent on both autocatalytic and metalloprotease-specific processing, J. Biol. Chem., 282, 34129, 10.1074/jbc.M705672200 Ravaud, 2003, Probing the role of divalent metal ions in a bacterial psychrophilic metalloprotease: binding studies of an enzyme in the crystalline state by x-ray crystallography, J. Bacteriol., 185, 4195, 10.1128/JB.185.14.4195-4203.2003 Yang, 2015, Metal ion dependence of the matrix Metalloproteinase-1 mechanism, Biochemistry, 54, 3631, 10.1021/acs.biochem.5b00379 Bitar, 2008, The metalloprotease of Listeria monocytogenes is activated by intramolecular autocatalysis, J. Bacteriol., 190, 107, 10.1128/JB.00852-07 Houston, 2012, Activation and proteolytic activity of the Treponema pallidum metalloprotease, pallilysin, PLoS Pathog., 8, e1002822, 10.1371/journal.ppat.1002822 de Kreij, 2000, Substrate specificity in the highly heterogeneous M4 peptidase family is determined by a small subset of amino acids, J. Biol. Chem., 275, 31115, 10.1074/jbc.M003889200 Yeats, 2004, The PepSY domain: a regulator of peptidase activity in the microbial environment?, Trends Biochem. Sci., 29, 169, 10.1016/j.tibs.2004.02.004 Nickerson, 2008, Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain, Mol. Microbiol., 69, 1530, 10.1111/j.1365-2958.2008.06384.x Suárez, 2007, Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach, Curr. Genet., 51, 331, 10.1007/s00294-007-0130-5 Szabady, 2011, TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins, Microbiology, 157, 516, 10.1099/mic.0.044529-0 Gomis-Rüth, 2009, Catalytic domain architecture of metzincin metalloproteases, J. Biol. Chem., 284, 15353, 10.1074/jbc.R800069200 Rawlings, 2015, Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Res. Lombard, 2014, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res., 42, D490, 10.1093/nar/gkt1178 Aspeborg, 2012, Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5), BMC Evol. Biol., 12, 186, 10.1186/1471-2148-12-186 Do, 2013, Molecular characterization of a glycosyl hydrolase family 10 xylanase from Aspergillus Niger, Protein Expr. Purif., 92, 196, 10.1016/j.pep.2013.09.011 Linton, 2015, A glycosyl hydrolase family 16 gene is responsible for the endogenous production of β-1,3-glucanases within decapod crustaceans, Gene, 569, 203, 10.1016/j.gene.2015.05.056 Tzelepis, 2012, Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa, Fungal Genet. Biol., 49, 717, 10.1016/j.fgb.2012.06.013 Kraushaar, 2015, Interactions by the fungal Flo11 adhesin depend on a fibronectin type III-like adhesin domain girdled by aromatic bands, Structure, 23, 1005, 10.1016/j.str.2015.03.021 Hashimoto, 2006, Recent structural studies of carbohydrate-binding modules, Cell. Mol. Life Sci., 63, 2954, 10.1007/s00018-006-6195-3 Ferdinand, 2013, Are cellulosome scaffolding protein CipC and CBM3-containing protein HycP, involved in adherence of Clostridium cellulolyticum to cellulose?, PLoS One, 8, e69360, 10.1371/journal.pone.0069360 Santos, 2012, Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168, Biochem. J., 441, 95, 10.1042/BJ20110869 Urbanowicz, 2007, A tomato endo-beta-1,4-glucanase, SlCel9C1, represents a distinct subclass with a new family of carbohydrate binding modules (CBM49), J. Biol. Chem., 282, 12066, 10.1074/jbc.M607925200 Garcia-Gonzalez, 2014, Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American Foulbrood of honey bees, PLoS Pathog., 10, e1004284, 10.1371/journal.ppat.1004284 Jam, 2016, Unraveling the multivalent binding of a marine family 6 carbohydrate-binding module with its native laminarin ligand, FEBS J., 10.1111/febs.13707 Raghothama, 2000, Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A, Biochemistry, 39, 978, 10.1021/bi992163+ Dai, 2015, Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen, Appl. Environ. Microbiol., 81, 1375, 10.1128/AEM.03682-14 Yi, 2013, Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose, PLoS One, 8, e84172, 10.1371/journal.pone.0084172 Yaniv, 2012, Structure of CBM3b of the major cellulosomal scaffoldin subunit ScaA from Acetivibrio cellulolyticus, Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun., 68, 8, 10.1107/S174430911104807X Schroeder, 2010, Structure and function of immunoglobulins, J. Allergy Clin. Immunol., 125, S41, 10.1016/j.jaci.2009.09.046 Chaplin, 2010, Overview of the immune response, J. Allergy Clin. Immunol., 125, S3, 10.1016/j.jaci.2009.12.980 Simon, 2013, Lamin A tail modification by SUMO1 is disrupted by familial partial lipodystrophy-causing mutations, Mol. Biol. Cell., 24, 342, 10.1091/mbc.e12-07-0527 Dittmer, 2011, The lamin protein family, Genome Biol., 12, 222, 10.1186/gb-2011-12-5-222 Qin, 2011, Structure and stability of the lamin A tail domain and HGPS mutant, J. Struct. Biol., 175, 425, 10.1016/j.jsb.2011.05.015 Shumaker, 2008, The highly conserved nuclear lamin Ig-fold binds to PCNA: its role in DNA replication, J. Cell Biol., 181, 269, 10.1083/jcb.200708155 Boyd, 2014, Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization, J. Bacteriol., 196, 2775, 10.1128/JB.01629-14 Colgan, 2006, Physiological roles for ecto-5’-nucleotidase (CD73), Purinergic Signal, 2, 351, 10.1007/s11302-005-5302-5 Hashikawa, 2003, Involvement of CD73 (ecto-5’-nucleotidase) in adenosine generation by human gingival fibroblasts, J. Dent. Res., 82, 888, 10.1177/154405910308201108 Ruer, 2008, The “P-usher”, a novel protein transporter involved in fimbrial assembly and TpsA secretion, EMBO J., 27, 2669, 10.1038/emboj.2008.197 Bierne, 2007, Listeria monocytogenes surface proteins: from genome predictions to function, Microbiol. Mol. Biol. Rev., 71, 377, 10.1128/MMBR.00039-06 Orgel, 2014, Variation in the helical structure of native collagen, PLoS One, 9, e89519, 10.1371/journal.pone.0089519 Myllyharju, 2001, Collagens and collagen-related diseases, Ann. Med., 33, 7, 10.3109/07853890109002055 Wei, 2005, Distinct substrate specificities of bacterial heparinases against N-unsubstituted glucosamine residues in heparan sulfate, J. Biol. Chem., 280, 15742, 10.1074/jbc.M501102200 Iruela-Arispe, 2004, Thrombospondin modules and angiogenesis, Int. J. Biochem. Cell Biol., 36, 1070, 10.1016/j.biocel.2004.01.025 Lawler, 2012, Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2, Cold Spring Harb. Perspect. Med., 2, a006627, 10.1101/cshperspect.a006627 Tan, 2006, The structures of the thrombospondin-1 N-terminal domain and its complex with a synthetic pentameric heparin, Structure, 14, 33, 10.1016/j.str.2005.09.017 Kojima, 2011, Mutations targeting the C-terminal domain of FliG can disrupt motor assembly in the Na(+)-driven flagella of Vibrio alginolyticus, J. Mol. Biol., 414, 62, 10.1016/j.jmb.2011.09.019 Andley, 2007, Crystallins in the eye: function and pathology, Prog. Retin. Eye Res., 26, 78, 10.1016/j.preteyeres.2006.10.003 Roemer, 1993, SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in beta-glucan synthesis, Mol. Cell. Biol., 13, 4039, 10.1128/MCB.13.7.4039 Gilbert, 2010, KRE genes are required for beta-1,6-glucan synthesis, maintenance of capsule architecture and cell wall protein anchoring in Cryptococcus neoformans, Mol. Microbiol., 76, 517, 10.1111/j.1365-2958.2010.07119.x Harkey, 1995, Isolation and characterization of a Vibrio cholerae gene (tagA) that encodes a ToxR-regulated lipoprotein, Gene, 153, 81, 10.1016/0378-1119(94)00811-6 McBride, 2003, Flavobacterium johnsoniae GldH is a lipoprotein that is required for gliding motility and chitin utilization, J. Bacteriol., 185, 6648, 10.1128/JB.185.22.6648-6657.2003 Arends, 2013, TraG encoded by the pIP501 type IV secretion system is a two-domain peptidoglycan-degrading enzyme essential for conjugative transfer, J. Bacteriol., 195, 4436, 10.1128/JB.02263-12 Undheim, 2014, Clawing through evolution: toxin diversification and convergence in the ancient lineage Chilopoda (centipedes), Mol. Biol. Evol., 31, 2124, 10.1093/molbev/msu162 Oubrie, 1999, Structure and mechanism of soluble quinoprotein glucose dehydrogenase, EMBO J., 18, 5187, 10.1093/emboj/18.19.5187 Ipata, 2013, The functional logic of cytosolic 5’-nucleotidases, Curr. Med. Chem., 20, 4205, 10.2174/0929867311320340002 Champagne, 1995, The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5’-nucleotidase family, Proc. Natl. Acad. Sci. U. S. A., 92, 694, 10.1073/pnas.92.3.694 Sun, 2006, Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor, Platelets, 17, 178, 10.1080/09537100500460234 Urch, 2009, Structural and functional characterization of a putative polysaccharide deacetylase of the human parasite Encephalitozoon cuniculi, Protein Sci., 18, 1197, 10.1002/pro.128 Zhao, 2010, Chitin deacetylases: properties and applications, Mar. Drugs, 8, 24, 10.3390/md8010024 Kolbinger, 2005, A cysteine-rich extracellular protein containing a PA14 domain mediates quorum sensing in Dictyostelium discoideum Eukaryot, Cell, 4, 991 Rigden, 2014, Structure- and context-based analysis of the GxGYxYP family reveals a new putative class of glycoside hydrolase, BMC Bioinforma., 15, 196, 10.1186/1471-2105-15-196 Zmudka, 2013, The structure of DesR from Streptomyces venezuelae, a β-glucosidase involved in macrolide activation, Protein Sci., 22, 883, 10.1002/pro.2204 Lei, 2005, The active conformation of the PAK1 kinase domain, Structure, 13, 769, 10.1016/j.str.2005.03.007 Oh, 2012, CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity, FEBS Lett., 586, 4070, 10.1016/j.febslet.2012.09.040 Maurer, 2012, Mutations in Streptococcus pneumoniae penicillin-binding protein 2x: importance of the C-terminal penicillin-binding protein and serine/threonine kinase-associated domains for beta-lactam binding, Microb. Drug Resist, 18, 314, 10.1089/mdr.2012.0022 Yeats, 2002, The PASTA domain: a beta-lactam-binding domain, Trends Biochem. Sci., 27, 438, 10.1016/S0968-0004(02)02164-3 Chawla, 2014, Protein kinase B (PknB) of Mycobacterium tuberculosis is essential for growth of the pathogen in vitro as well as for survival within the host, J. Biol. Chem., 289, 13858, 10.1074/jbc.M114.563536 Li, 2011, Pleiotropic functions of EAPII/TTRAP/TDP2: cancer development, chemoresistance and beyond, Cell Cycle, 10, 3274, 10.4161/cc.10.19.17763 Pawłowski, 2010, A widespread peroxiredoxin-like domain present in tumor suppression- and progression-implicated proteins, BMC Genomics, 11, 590, 10.1186/1471-2164-11-590 Iwasaki, 2006, Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp strain RHA1, Appl. Environ. Microbiol., 72, 5396, 10.1128/AEM.00298-06 Schlosrich, 2006, Directed evolution of a non-heme-iron-dependent extradiol catechol dioxygenase: identification of mutants with intradiol oxidative cleavage activity, Chembiochem, 7, 1899, 10.1002/cbic.200600296 Becerra, 2009, Increased activity of indoleamine 2,3-dioxygenase in serum from acutely infected dengue patients linked to gamma interferon antiviral function, J. Gen. Virol., 90, 810, 10.1099/vir.0.004416-0 Sivashankari, 2006, Functional annotation of hypothetical proteins - A review, Bioinformation, 1, 335, 10.6026/97320630001335 Mohan, 2012, Computational structural and functional analysis of hypothetical proteins of Staphylococcus aureus, Bioinformation, 8, 722, 10.6026/97320630008722 Patel, 2016, Letter to the Editor on “The urgency of annotating pathogen hypothetical genes,”, Gene Rep., 4, 233, 10.1016/j.genrep.2016.07.004 Patel, 2017, Bacterial adhesins, the pathogenic weapons to trick host defense arsenal, Biomed. Pharmacother., 93, 763, 10.1016/j.biopha.2017.06.102 Busk, 2015, Classification of fungal and bacterial lytic polysaccharide monooxygenases, BMC Genomics, 16, 368, 10.1186/s12864-015-1601-6 Li, 2007, The chitin catabolic cascade in the marine bacterium Vibrio cholerae: characterization of a unique chitin oligosaccharide deacetylase, Glycobiology, 17, 1377, 10.1093/glycob/cwm096 Kini, 2015, Studies on the Chitin Binding Property of Novel Cysteine-Rich Peptides from Alternanthera sessilis, Biochemistry, 54, 6639, 10.1021/acs.biochem.5b00872 Kaku, 2006, Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor, Proc. Natl. Acad. Sci. U. S. A, 103, 11086, 10.1073/pnas.0508882103 Miya, 2007, CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 104, 19613, 10.1073/pnas.0705147104 de Jonge, 2010, Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants, Science, 329, 953, 10.1126/science.1190859 Patel, 2016, Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance, Infect. Genet. Evol., 45, 151, 10.1016/j.meegid.2016.08.030 Patel, 2016, Analysis of Ebola virus polymerase domains to find strain-specific differences and to gain insight on their pathogenicity, VirusDisease, 27, 242, 10.1007/s13337-016-0334-8 Patel, 2016, In silico analysis of Hepatitis C virus (HCV) polyprotein domains and their comparison with other pathogens and allergens to gain insight on pathogenicity mechanisms, Comput. Biol. Chem., 65, 91, 10.1016/j.compbiolchem.2016.10.006