In silico analysis of ChtBD3 domain to find its role in bacterial pathogenesis and beyond
Tài liệu tham khảo
Tran, 2011, Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation, Histol. Histopathol., 26, 1453
Javed, 2013, Chitinases: an update, J. Pharm. Bioallied Sci., 5, 21, 10.4103/0975-7406.106559
Hamid, 2013, Chitinases: an update, J. Pharm. Bioallied Sci., 5, 21, 10.4103/0975-7406.106559
Itakura, 2017, Sugar-binding profiles of chitin-binding lectins from the hevein family: a comprehensive study, Int. J. Mol. Sci., 18, 1160, 10.3390/ijms18061160
Fadel, 2016, X-Ray crystal structure of the full length human chitotriosidase (CHIT1) reveals features of its chitin binding domain, PLoS One, 11, e0154190, 10.1371/journal.pone.0154190
Tetreau, 2015, Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects, Insect Biochem. Mol. Biol., 62, 127, 10.1016/j.ibmb.2014.12.002
Tjoelker, 2000, Structural and functional definition of the human chitinase chitin-binding domain, J. Biol. Chem., 275, 514, 10.1074/jbc.275.1.514
Folders, 2001, Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein, J. Bacteriol., 183, 7044, 10.1128/JB.183.24.7044-7052.2001
Watanabe, 1994, The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation, J. Bacteriol., 176, 4465, 10.1128/jb.176.15.4465-4472.1994
Zhan, 2015, Three-dimensional (3D) structure prediction and function analysis of the chitin-binding domain 3 protein HD73_3189 from Bacillus thuringiensis HD73, Biomed. Mater. Eng., 26, S2019
Svitil, 1998, A chitin-binding domain in a marine bacterial chitinase and other microbial chitinases: implications for the ecology and evolution of 1,4-beta-glycanases, Microbiology, 144, 1299, 10.1099/00221287-144-5-1299
Mine, 2014, Solution structure of the chitin-binding domain 1 (ChBD1) of a hyperthermophilic chitinase from Pyrococcus furiosus, J. Biochem., 155, 115, 10.1093/jb/mvt104
Tsujibo, 2002, Identification and characterization of the gene cluster involved in chitin degradation in a marine bacterium, Alteromonas sp strain O-7, Appl. Environ. Microbiol., 68, 263, 10.1128/AEM.68.1.263-270.2002
Tsujibo, 2003, Characterization of chitinase genes from an alkaliphilic actinomycete, Nocardiopsis prasina OPC-131, Appl. Environ. Microbiol., 69, 894, 10.1128/AEM.69.2.894-900.2003
Ikegami, 2000, Solution structure of the chitin-binding domain of Bacillus circulans WL-12 chitinase A1, J. Biol. Chem., 275, 13654, 10.1074/jbc.275.18.13654
Hager, 2006, Type IV pili-mediated secretion modulates Francisella virulence, Mol. Microbiol., 62, 227, 10.1111/j.1365-2958.2006.05365.x
Takeo, 2009, Enzymatic characterization of the Plasmodium vivax chitinase, a potential malaria transmission-blocking target, Parasitol. Int., 58, 243, 10.1016/j.parint.2009.05.002
Zhou, 2017, Preliminary characterization of putative structural cuticular proteins in the malaria vector Anopheles sinensis, Pest Manag. Sci., 10.1002/ps.4649
Martínez-Caballero, 2014, Comparative study of two GH19 chitinase-like proteins from Hevea brasiliensis, one exhibiting a novel carbohydrate-binding domain, FEBS J., 281, 4535, 10.1111/febs.12962
Crasson, 2017, Human chitotriosidase: catalytic domain or carbohydrate binding module, Who's leading HCHT's biological function, Sci. Rep., 7, 2768, 10.1038/s41598-017-02382-z
Ujita, 2003, Carbohydrate binding specificity of the recombinant chitin-binding domain of human macrophage chitinase, Biosci. Biotechnol. Biochem., 67, 2402, 10.1271/bbb.67.2402
Levitz, 2010, Innate recognition of fungal cell walls, PLoS Pathog., 6, e1000758, 10.1371/journal.ppat.1000758
Patel, 2017, Chitin and chitinase: role in pathogenicity, allergenicity and health, Int. J. Biol. Macromol., 97, 331, 10.1016/j.ijbiomac.2017.01.042
Messina, 2014, Global spread of dengue virus types: mapping the 70 year history, Trends Microbiol., 22, 138, 10.1016/j.tim.2013.12.011
Shen, 2015, The correlation between chitin and acidic mammalian chitinase in animal models of allergic asthma, Int. J. Mol. Sci., 16, 27371, 10.3390/ijms161126033
Uni, 2012, Mutational analysis of a CBM family 5 chitin-binding domain of an alkaline chitinase from Bacillus sp J813, Biosci. Biotechnol. Biochem., 76, 530, 10.1271/bbb.110835
Ferrandon, 2003, A single surface tryptophan in the chitin-binding domain from Bacillus circulans chitinase A1 plays a pivotal role in binding chitin and can be modified to create an elutable affinity tag, Biochim. Biophys. Acta, 1621, 31, 10.1016/S0304-4165(03)00029-1
Orikoshi, 2005, Roles of four chitinases (chia, chib, chic, and chid) in the chitin degradation system of marine bacterium Alteromonas sp strain O-7, Appl. Environ. Microbiol., 71, 1811, 10.1128/AEM.71.4.1811-1815.2005
Ponting, 1999, SMART: identification and annotation of domains from signalling and extracellular protein sequences, Nucleic Acids Res., 27, 229, 10.1093/nar/27.1.229
Rao, 1998, Molecular and biotechnological aspects of microbial proteases, Microbiol. Mol. Biol. Rev., 62, 597, 10.1128/MMBR.62.3.597-635.1998
Ekici, 2008, Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration, Protein Sci., 17, 2023, 10.1110/ps.035436.108
Uriarte, 2008, Comparison of proteins expressed on secretory vesicle membranes and plasma membranes of human neutrophils, J. Immunol., 180, 5575, 10.4049/jimmunol.180.8.5575
Nickerson, 2007, Activation of the SspA serine protease zymogen of Staphylococcus aureus proceeds through unique variations of a trypsinogen-like mechanism and is dependent on both autocatalytic and metalloprotease-specific processing, J. Biol. Chem., 282, 34129, 10.1074/jbc.M705672200
Ravaud, 2003, Probing the role of divalent metal ions in a bacterial psychrophilic metalloprotease: binding studies of an enzyme in the crystalline state by x-ray crystallography, J. Bacteriol., 185, 4195, 10.1128/JB.185.14.4195-4203.2003
Yang, 2015, Metal ion dependence of the matrix Metalloproteinase-1 mechanism, Biochemistry, 54, 3631, 10.1021/acs.biochem.5b00379
Bitar, 2008, The metalloprotease of Listeria monocytogenes is activated by intramolecular autocatalysis, J. Bacteriol., 190, 107, 10.1128/JB.00852-07
Houston, 2012, Activation and proteolytic activity of the Treponema pallidum metalloprotease, pallilysin, PLoS Pathog., 8, e1002822, 10.1371/journal.ppat.1002822
de Kreij, 2000, Substrate specificity in the highly heterogeneous M4 peptidase family is determined by a small subset of amino acids, J. Biol. Chem., 275, 31115, 10.1074/jbc.M003889200
Yeats, 2004, The PepSY domain: a regulator of peptidase activity in the microbial environment?, Trends Biochem. Sci., 29, 169, 10.1016/j.tibs.2004.02.004
Nickerson, 2008, Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain, Mol. Microbiol., 69, 1530, 10.1111/j.1365-2958.2008.06384.x
Suárez, 2007, Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach, Curr. Genet., 51, 331, 10.1007/s00294-007-0130-5
Szabady, 2011, TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins, Microbiology, 157, 516, 10.1099/mic.0.044529-0
Gomis-Rüth, 2009, Catalytic domain architecture of metzincin metalloproteases, J. Biol. Chem., 284, 15353, 10.1074/jbc.R800069200
Rawlings, 2015, Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Res.
Lombard, 2014, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res., 42, D490, 10.1093/nar/gkt1178
Aspeborg, 2012, Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5), BMC Evol. Biol., 12, 186, 10.1186/1471-2148-12-186
Do, 2013, Molecular characterization of a glycosyl hydrolase family 10 xylanase from Aspergillus Niger, Protein Expr. Purif., 92, 196, 10.1016/j.pep.2013.09.011
Linton, 2015, A glycosyl hydrolase family 16 gene is responsible for the endogenous production of β-1,3-glucanases within decapod crustaceans, Gene, 569, 203, 10.1016/j.gene.2015.05.056
Tzelepis, 2012, Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa, Fungal Genet. Biol., 49, 717, 10.1016/j.fgb.2012.06.013
Kraushaar, 2015, Interactions by the fungal Flo11 adhesin depend on a fibronectin type III-like adhesin domain girdled by aromatic bands, Structure, 23, 1005, 10.1016/j.str.2015.03.021
Hashimoto, 2006, Recent structural studies of carbohydrate-binding modules, Cell. Mol. Life Sci., 63, 2954, 10.1007/s00018-006-6195-3
Ferdinand, 2013, Are cellulosome scaffolding protein CipC and CBM3-containing protein HycP, involved in adherence of Clostridium cellulolyticum to cellulose?, PLoS One, 8, e69360, 10.1371/journal.pone.0069360
Santos, 2012, Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168, Biochem. J., 441, 95, 10.1042/BJ20110869
Urbanowicz, 2007, A tomato endo-beta-1,4-glucanase, SlCel9C1, represents a distinct subclass with a new family of carbohydrate binding modules (CBM49), J. Biol. Chem., 282, 12066, 10.1074/jbc.M607925200
Garcia-Gonzalez, 2014, Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American Foulbrood of honey bees, PLoS Pathog., 10, e1004284, 10.1371/journal.ppat.1004284
Jam, 2016, Unraveling the multivalent binding of a marine family 6 carbohydrate-binding module with its native laminarin ligand, FEBS J., 10.1111/febs.13707
Raghothama, 2000, Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A, Biochemistry, 39, 978, 10.1021/bi992163+
Dai, 2015, Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen, Appl. Environ. Microbiol., 81, 1375, 10.1128/AEM.03682-14
Yi, 2013, Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose, PLoS One, 8, e84172, 10.1371/journal.pone.0084172
Yaniv, 2012, Structure of CBM3b of the major cellulosomal scaffoldin subunit ScaA from Acetivibrio cellulolyticus, Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun., 68, 8, 10.1107/S174430911104807X
Schroeder, 2010, Structure and function of immunoglobulins, J. Allergy Clin. Immunol., 125, S41, 10.1016/j.jaci.2009.09.046
Chaplin, 2010, Overview of the immune response, J. Allergy Clin. Immunol., 125, S3, 10.1016/j.jaci.2009.12.980
Simon, 2013, Lamin A tail modification by SUMO1 is disrupted by familial partial lipodystrophy-causing mutations, Mol. Biol. Cell., 24, 342, 10.1091/mbc.e12-07-0527
Dittmer, 2011, The lamin protein family, Genome Biol., 12, 222, 10.1186/gb-2011-12-5-222
Qin, 2011, Structure and stability of the lamin A tail domain and HGPS mutant, J. Struct. Biol., 175, 425, 10.1016/j.jsb.2011.05.015
Shumaker, 2008, The highly conserved nuclear lamin Ig-fold binds to PCNA: its role in DNA replication, J. Cell Biol., 181, 269, 10.1083/jcb.200708155
Boyd, 2014, Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization, J. Bacteriol., 196, 2775, 10.1128/JB.01629-14
Colgan, 2006, Physiological roles for ecto-5’-nucleotidase (CD73), Purinergic Signal, 2, 351, 10.1007/s11302-005-5302-5
Hashikawa, 2003, Involvement of CD73 (ecto-5’-nucleotidase) in adenosine generation by human gingival fibroblasts, J. Dent. Res., 82, 888, 10.1177/154405910308201108
Ruer, 2008, The “P-usher”, a novel protein transporter involved in fimbrial assembly and TpsA secretion, EMBO J., 27, 2669, 10.1038/emboj.2008.197
Bierne, 2007, Listeria monocytogenes surface proteins: from genome predictions to function, Microbiol. Mol. Biol. Rev., 71, 377, 10.1128/MMBR.00039-06
Orgel, 2014, Variation in the helical structure of native collagen, PLoS One, 9, e89519, 10.1371/journal.pone.0089519
Myllyharju, 2001, Collagens and collagen-related diseases, Ann. Med., 33, 7, 10.3109/07853890109002055
Wei, 2005, Distinct substrate specificities of bacterial heparinases against N-unsubstituted glucosamine residues in heparan sulfate, J. Biol. Chem., 280, 15742, 10.1074/jbc.M501102200
Iruela-Arispe, 2004, Thrombospondin modules and angiogenesis, Int. J. Biochem. Cell Biol., 36, 1070, 10.1016/j.biocel.2004.01.025
Lawler, 2012, Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2, Cold Spring Harb. Perspect. Med., 2, a006627, 10.1101/cshperspect.a006627
Tan, 2006, The structures of the thrombospondin-1 N-terminal domain and its complex with a synthetic pentameric heparin, Structure, 14, 33, 10.1016/j.str.2005.09.017
Kojima, 2011, Mutations targeting the C-terminal domain of FliG can disrupt motor assembly in the Na(+)-driven flagella of Vibrio alginolyticus, J. Mol. Biol., 414, 62, 10.1016/j.jmb.2011.09.019
Andley, 2007, Crystallins in the eye: function and pathology, Prog. Retin. Eye Res., 26, 78, 10.1016/j.preteyeres.2006.10.003
Roemer, 1993, SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in beta-glucan synthesis, Mol. Cell. Biol., 13, 4039, 10.1128/MCB.13.7.4039
Gilbert, 2010, KRE genes are required for beta-1,6-glucan synthesis, maintenance of capsule architecture and cell wall protein anchoring in Cryptococcus neoformans, Mol. Microbiol., 76, 517, 10.1111/j.1365-2958.2010.07119.x
Harkey, 1995, Isolation and characterization of a Vibrio cholerae gene (tagA) that encodes a ToxR-regulated lipoprotein, Gene, 153, 81, 10.1016/0378-1119(94)00811-6
McBride, 2003, Flavobacterium johnsoniae GldH is a lipoprotein that is required for gliding motility and chitin utilization, J. Bacteriol., 185, 6648, 10.1128/JB.185.22.6648-6657.2003
Arends, 2013, TraG encoded by the pIP501 type IV secretion system is a two-domain peptidoglycan-degrading enzyme essential for conjugative transfer, J. Bacteriol., 195, 4436, 10.1128/JB.02263-12
Undheim, 2014, Clawing through evolution: toxin diversification and convergence in the ancient lineage Chilopoda (centipedes), Mol. Biol. Evol., 31, 2124, 10.1093/molbev/msu162
Oubrie, 1999, Structure and mechanism of soluble quinoprotein glucose dehydrogenase, EMBO J., 18, 5187, 10.1093/emboj/18.19.5187
Ipata, 2013, The functional logic of cytosolic 5’-nucleotidases, Curr. Med. Chem., 20, 4205, 10.2174/0929867311320340002
Champagne, 1995, The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5’-nucleotidase family, Proc. Natl. Acad. Sci. U. S. A., 92, 694, 10.1073/pnas.92.3.694
Sun, 2006, Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor, Platelets, 17, 178, 10.1080/09537100500460234
Urch, 2009, Structural and functional characterization of a putative polysaccharide deacetylase of the human parasite Encephalitozoon cuniculi, Protein Sci., 18, 1197, 10.1002/pro.128
Zhao, 2010, Chitin deacetylases: properties and applications, Mar. Drugs, 8, 24, 10.3390/md8010024
Kolbinger, 2005, A cysteine-rich extracellular protein containing a PA14 domain mediates quorum sensing in Dictyostelium discoideum Eukaryot, Cell, 4, 991
Rigden, 2014, Structure- and context-based analysis of the GxGYxYP family reveals a new putative class of glycoside hydrolase, BMC Bioinforma., 15, 196, 10.1186/1471-2105-15-196
Zmudka, 2013, The structure of DesR from Streptomyces venezuelae, a β-glucosidase involved in macrolide activation, Protein Sci., 22, 883, 10.1002/pro.2204
Lei, 2005, The active conformation of the PAK1 kinase domain, Structure, 13, 769, 10.1016/j.str.2005.03.007
Oh, 2012, CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity, FEBS Lett., 586, 4070, 10.1016/j.febslet.2012.09.040
Maurer, 2012, Mutations in Streptococcus pneumoniae penicillin-binding protein 2x: importance of the C-terminal penicillin-binding protein and serine/threonine kinase-associated domains for beta-lactam binding, Microb. Drug Resist, 18, 314, 10.1089/mdr.2012.0022
Yeats, 2002, The PASTA domain: a beta-lactam-binding domain, Trends Biochem. Sci., 27, 438, 10.1016/S0968-0004(02)02164-3
Chawla, 2014, Protein kinase B (PknB) of Mycobacterium tuberculosis is essential for growth of the pathogen in vitro as well as for survival within the host, J. Biol. Chem., 289, 13858, 10.1074/jbc.M114.563536
Li, 2011, Pleiotropic functions of EAPII/TTRAP/TDP2: cancer development, chemoresistance and beyond, Cell Cycle, 10, 3274, 10.4161/cc.10.19.17763
Pawłowski, 2010, A widespread peroxiredoxin-like domain present in tumor suppression- and progression-implicated proteins, BMC Genomics, 11, 590, 10.1186/1471-2164-11-590
Iwasaki, 2006, Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp strain RHA1, Appl. Environ. Microbiol., 72, 5396, 10.1128/AEM.00298-06
Schlosrich, 2006, Directed evolution of a non-heme-iron-dependent extradiol catechol dioxygenase: identification of mutants with intradiol oxidative cleavage activity, Chembiochem, 7, 1899, 10.1002/cbic.200600296
Becerra, 2009, Increased activity of indoleamine 2,3-dioxygenase in serum from acutely infected dengue patients linked to gamma interferon antiviral function, J. Gen. Virol., 90, 810, 10.1099/vir.0.004416-0
Sivashankari, 2006, Functional annotation of hypothetical proteins - A review, Bioinformation, 1, 335, 10.6026/97320630001335
Mohan, 2012, Computational structural and functional analysis of hypothetical proteins of Staphylococcus aureus, Bioinformation, 8, 722, 10.6026/97320630008722
Patel, 2016, Letter to the Editor on “The urgency of annotating pathogen hypothetical genes,”, Gene Rep., 4, 233, 10.1016/j.genrep.2016.07.004
Patel, 2017, Bacterial adhesins, the pathogenic weapons to trick host defense arsenal, Biomed. Pharmacother., 93, 763, 10.1016/j.biopha.2017.06.102
Busk, 2015, Classification of fungal and bacterial lytic polysaccharide monooxygenases, BMC Genomics, 16, 368, 10.1186/s12864-015-1601-6
Li, 2007, The chitin catabolic cascade in the marine bacterium Vibrio cholerae: characterization of a unique chitin oligosaccharide deacetylase, Glycobiology, 17, 1377, 10.1093/glycob/cwm096
Kini, 2015, Studies on the Chitin Binding Property of Novel Cysteine-Rich Peptides from Alternanthera sessilis, Biochemistry, 54, 6639, 10.1021/acs.biochem.5b00872
Kaku, 2006, Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor, Proc. Natl. Acad. Sci. U. S. A, 103, 11086, 10.1073/pnas.0508882103
Miya, 2007, CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 104, 19613, 10.1073/pnas.0705147104
de Jonge, 2010, Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants, Science, 329, 953, 10.1126/science.1190859
Patel, 2016, Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance, Infect. Genet. Evol., 45, 151, 10.1016/j.meegid.2016.08.030
Patel, 2016, Analysis of Ebola virus polymerase domains to find strain-specific differences and to gain insight on their pathogenicity, VirusDisease, 27, 242, 10.1007/s13337-016-0334-8
Patel, 2016, In silico analysis of Hepatitis C virus (HCV) polyprotein domains and their comparison with other pathogens and allergens to gain insight on pathogenicity mechanisms, Comput. Biol. Chem., 65, 91, 10.1016/j.compbiolchem.2016.10.006