In silico analysis and molecular identification of an anaphase-promoting complex homologue from human pathogen Entamoeba histolytica
Tóm tắt
Amoebiasis, being endemic worldwide, is the second leading cause of parasite-associated morbidity and mortality after malaria. The human parasite Entamoeba histolytica is responsible for the disease. Metronidazole is considered as the gold standard for the treatment of amoebiasis, but this antibiotic is carcinogenic and the development of antibiotic resistance against E. histolytica is a major health concern. Chromosome segregation is irregular in this parasite due to the absence of a few cell cycle checkpoint proteins. Anaphase-promoting complex (APC/C or cyclosome) is an E3 ubiquitin ligase that synchronizes chromosome segregation and anaphase progression via the ubiquitin-proteasome system. Proteasome is considered to be an attractive drug target for protozoan parasites. For the present study, EhApc11 from E. histolytica, a homologue of Apc11 in humans, is selected for elucidating its structural and functional aspects by detailed in silico analysis and molecular methods. Its physicochemical characteristics, identification of probable interactors, 3D model and quality analysis are done using standard bioinformatics tools. cDNA sequence of EhAPC11 has been further cloned for molecular characterization. Conserved domain analysis revealed that EhApc11 belongs to the RING (really interesting new gene) superfamily and has ligand binding capacity. Expression study in Escherichia coli BL21 (DE3) revealed that the molecular weight of glutathione S-transferase (GST)-tagged protein is ~ 36 kDa. EhApc11 is a hydrophilic, thermostable, extracellular protein with potent antigenicity. The study will serve as a groundwork for future in-depth analysis regarding the validation of protein-protein interaction of EhApc11 with its substrates identified by STRING analysis and the potential of EhApc11 to serve as an anti-amoebic drug target.
Tài liệu tham khảo
Bercu TE, Petri WA, Behm JW (2007) Amebic colitis: new insights into pathogenesis and treatment. Curr Gastroenterol Rep 9(5):429–433. https://doi.org/10.1007/s11894-007-0054-8
Fotedar R, Stark D, Beebe N, Marriott D, Ellis J, Harkness J (2007) Laboratory diagnostic techniques for Entamoeba species. Clin Microbiol Rev 20:511–532 table of contents. https://doi.org/10.1128/CMR.00004-07
Zeehaida M, Wan Nor Amilah WAW, Amry AR, Hassan S, Sarimah A, Rahmah N (2008) A study on the usefulness of Techlab Entamoeba histolytica II antigen detection ELISA in the diagnosis of amoebic liver abscess (ALA) at Hospital Universiti Sains Malaysia (HUSM), Kelantan, Malaysia. Trop Biomed 25(3):209–216
Haque R, Ali IK, Akther S, Petri WA (1998) Comparison of PCR, isoenzyme analysis, and antigen detection for diagnosis of Entamoeba histolytica infection. J Clin Microbiol 36(2):449–452. https://doi.org/10.1128/JCM.36.2.449-452.1998
Gatti S, Swierczynski G, Robinson F, Anselmi M, Corrales J, Moreira J et al (2002) Amebic infections due to the Entamoeba histolytica-Entamoeba dispar complex: a study of the incidence in a remote rural area of Ecuador. Am J Trop Med Hyg 67(1):123–127. https://doi.org/10.4269/ajtmh.2002.67.123
Visser LG, Verweij JJ, Van Esbroeck M, Edeling WM, Clerinx J, Polderman AM (2006) Diagnostic methods for differentiation of Entamoeba histolytica and Entamoeba dispar in carriers: performance and clinical implications in a non-endemic setting. Int J Med Microbiol IJMM 296(6):397–403. https://doi.org/10.1016/j.ijmm.2006.03.001
Mohanty S, Sharma N, Deb M (2014) Microscopy versus enzyme linked immunosorbent assay test for detection of Entamoeba histolytica infection in stool samples. Trop Parasitol 4(2):136–138. https://doi.org/10.4103/2229-5070.138547
Ahmad N, Khan M, Hoque MI, Haque R, Mondol D (2007) Detection of Entamoeba histolytica DNA from liver abscess aspirate using polymerase chain reaction (PCR): a diagnostic tool for amoebic liver abscess. Bangladesh Med Res Counc Bull 33(1):13–20
Mabey D, Peeling RW, Ustianowski A, Perkins MD (2004) Diagnostics for the developing world. Nat Rev Microbiol 2(3):231–240. https://doi.org/10.1038/nrmicro841
Irusen EM, Jackson TF, Simjee AE (1992) Asymptomatic intestinal colonization by pathogenic Entamoeba histolytica in amebic liver abscess: prevalence, response to therapy, and pathogenic potential. Clin Infect Dis Off Publ Infect Dis Soc Am 14(4):889–893. https://doi.org/10.1093/clinids/14.4.889
Spillmann R, Ayala SC, Sanchez CE (1976) Double-blind test of metronidazole and tinidazole in the treatment of asymptomatic Entamoeba histolytica and Entamoeba hartmanni carriers. Am J Trop Med Hyg 25(4):549–551. https://doi.org/10.4269/ajtmh.1976.25.549
Leitsch D (2019) A review on metronidazole: an old warhorse in antimicrobial chemotherapy. Parasitology 146(9):1167–1178. https://doi.org/10.1017/S0031182017002025
Bansal D, Malla N, Mahajan RC (2006) Drug resistance in amoebiasis. Indian J Med Res 123(2):115–118
Wassmann C, Hellberg A, Tannich E, Bruchhaus I (1999) Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J Biol Chem 274(37):26051–26056. https://doi.org/10.1074/jbc.274.37.26051
Dobiás L, Cerná M, Rössner P, Srám R (1994) Genotoxicity and carcinogenicity of metronidazole. Mutat Res 317(3):177–194. https://doi.org/10.1016/0165-1110(94)90001-9
Friedman GD, Jiang S-F, Udaltsova N, Quesenberry CP, Chan J, Habel LA (2009) Epidemiologic evaluation of pharmaceuticals with limited evidence of carcinogenicity. Int J Cancer 125(9):2173–2178. https://doi.org/10.1002/ijc.24545
Stanley SL (2006) Vaccines for amoebiasis: barriers and opportunities. Parasitology 133(Suppl):S81–S86 https://doi.org/10.1017/S003118200600182X
Xu H, Xu H, Lin M, Wang W, Li Z, Huang J, Chen YZ, Chen X (2007) Learning the drug target-likeness of a protein. Proteomics 7(23):4255–4263. https://doi.org/10.1002/pmic.200700062
Banerjee S, Das S, Lohia A (2002) Eukaryotic checkpoints are absent in the cell division cycle of Entamoeba histolytica. J Biosci 27(6):567–572. https://doi.org/10.1007/BF02704849
Grant KM (2008) Targeting the cell cycle in the pursuit of novel chemotherapies against parasitic protozoa. Curr Pharm Des 14(9):917–924. https://doi.org/10.2174/138161208784041042
Sánchez R, Alagón A, Stock RP (2002) Entamoeba histolytica: intracellular distribution of the proteasome. Exp Parasitol 102:187–190 https://doi.org/10.1016/s0014-4894(03)00055-9
Arya S, Sharma G, Gupta P, Tiwari S (2012) In silico analysis of ubiquitin/ubiquitin-like modifiers and their conjugating enzymes in Entamoeba species. Parasitol Res 111(1):37–51. https://doi.org/10.1007/s00436-011-2799-0
Ciechanover A, Iwai K (2004) The ubiquitin system: from basic mechanisms to the patient bed. IUBMB Life 56(4):193–201. https://doi.org/10.1080/1521654042000223616
Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, Ruderman JV, Hershko A (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6(2):185–197. https://doi.org/10.1091/mbc.6.2.185
Peters J-M (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7(9):644–656. https://doi.org/10.1038/nrm1988
Tang Z, Li B, Bharadwaj R, Zhu H, Ozkan E, Hakala K et al (2001) APC2 Cullin protein and APC11 RING protein comprise the minimal ubiquitin ligase module of the anaphase-promoting complex. Mol Biol Cell 12(12):3839–3851. https://doi.org/10.1091/mbc.12.12.3839
Leverson JD, Joazeiro CA, Page AM, Huang HK, Hieter P, Hunter T (2000) The APC11 RING-H2 finger mediates E2-dependent ubiquitination. Mol Biol Cell 11(7):2315–2325. https://doi.org/10.1091/mbc.11.7.2315
Huang H-C, Shi J, Orth JD, Mitchison TJ (2009) Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell 16(4):347–358. https://doi.org/10.1016/j.ccr.2009.08.020
Chang T-S, Jeong W, Lee D-Y, Cho C-S, Rhee SG (2004) The RING-H2-finger protein APC11 as a target of hydrogen peroxide. Free Radic Biol Med 37(4):521–530. https://doi.org/10.1016/j.freeradbiomed.2004.05.006
Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD et al (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol Clifton NJ 112:531–552 https://doi.org/10.1385/1-59259-584-7:531
Buchan DWA, Jones DT (2019) The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res 47(W1):W402–W407. https://doi.org/10.1093/nar/gkz297
Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinforma 54(1):5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3
Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37(suppl_2):W510–W514. https://doi.org/10.1093/nar/gkp322
Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server):W407–W410. https://doi.org/10.1093/nar/gkm290
Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci Publ Protein Soc 2(9):1511–1519. https://doi.org/10.1002/pro.5560020916
Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291. https://doi.org/10.1107/S0021889892009944
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(D1):D447–D452. https://doi.org/10.1093/nar/gku1003
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME Suite: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server):W202–W208. https://doi.org/10.1093/nar/gkp335
Yang J, Roy A, Zhang Y (2013) Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinforma Oxf Engl 29(20):2588–2595. https://doi.org/10.1093/bioinformatics/btt447
Yu C-S, Chen Y-C, Lu C-H, Hwang J-K (2006) Prediction of protein subcellular localization. Proteins 64(3):643–651. https://doi.org/10.1002/prot.21018
Rajendran L, Knölker H-J, Simons K (2010) Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 9(1):29–42. https://doi.org/10.1038/nrd2897
Diamond LS, Harlow DR, Cunnick CC (1978) A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans R Soc Trop Med Hyg 72(4):431–432. https://doi.org/10.1016/0035-9203(78)90144-x
Buxbaum E (2015) Fundamentals of protein structure and function, 2nd edn. Springer International Publishing https://doi.org/10.1007/978-3-319-19920-7
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084
Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17(4):355–362. https://doi.org/10.1002/prot.340170404
Pham JS, Dawson KL, Jackson KE, Lim EE, Pasaje CFA, Turner KEC, Ralph SA (2014) Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. Int J Parasitol Drugs Drug Resist 4(1):1–13. https://doi.org/10.1016/j.ijpddr.2013.10.001
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39(Database):D225–D229. https://doi.org/10.1093/nar/gkq1189
Borden KL (2000) RING domains: master builders of molecular scaffolds? J Mol Biol 295(5):1103–1112. https://doi.org/10.1006/jmbi.1999.3429
Kinoshita K, Nakamura H (2005) Identification of the ligand binding sites on the molecular surface of proteins. Protein Sci Publ Protein Soc 14(3):711–718. https://doi.org/10.1110/ps.041080105
Magliery TJ, Regan L (2005) Sequence variation in ligand binding sites in proteins. BMC Bioinformatics 6(1):240. https://doi.org/10.1186/1471-2105-6-240
Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem (Tokyo) 88(6):1895–1898
Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132. https://doi.org/10.1016/0022-2836(82)90515-0
Chasapis CT, Spyroulias GA (2009) RING finger E(3) ubiquitin ligases: structure and drug discovery. Curr Pharm Des 15(31):3716–3731. https://doi.org/10.2174/138161209789271825
Ohta T, Michel JJ, Schottelius AJ, Xiong Y (1999) ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell 3(4):535–541. https://doi.org/10.1016/s1097-2765(00)80482-7
Buschhorn BA, Petzold G, Galova M, Dube P, Kraft C, Herzog F, Stark H, Peters JM (2011) Substrate binding on the APC/C occurs between the co-activator CDH1 and the processivity factor DOC1. Nat Struct Mol Biol 18(1):6–13. https://doi.org/10.1038/nsmb.1979