In search of lost time constants and of non-Michaelis–Menten parameters
Tài liệu tham khảo
Acker, 2014, Considerations for the design and reporting of enzyme assays in high-throughput screening applications, Persp. Sci., 1, 56
Baici, 2015, 39
Bajzer, 2012, About and beyond the Henri–Michaelis–Menten rate equation for single-substrate enzyme kinetics, Biochem. Biophys. Res. Commun., 417, 982, 10.1016/j.bbrc.2011.12.051
Berberan-Santos, 2010, A general treatment of Henri–Michaelis–Menten enzyme kinetics: exact series solution and approximate analytical solutions, MATCH Commun. Math. Comput. Chem., 63, 283
Bersani, 2011, Asymptotic expansions in enzyme reactions with high enzyme concentrations, Math. Methods Appl. Sci., 34, 1954, 10.1002/mma.1495
Briggs, 1925, A note on the kinetics of enzyme action, Biochem. J., 19, 338, 10.1042/bj0190338
Brown, 1902, Enzyme action, J. Chem. Soc. Trans., 81, 373, 10.1039/CT9028100373
Cornish-Bowden, 1987, The time dimension in steady-state kinetics: a simplified representation of control coefficients, Biochem. Educ., 15, 144, 10.1016/0307-4412(87)90048-3
Cornish-Bowden, 2012, 25
Dormand, 1980, A family of embedded Runge–Kutta formulae, J. Comp. Appl. Math., 6, 19, 10.1016/0771-050X(80)90013-3
Duggleby, 2001, Quantitative analysis of the time courses of enzyme-catalyzed reactions, Methods, 24, 168, 10.1006/meth.2001.1177
Eisenthal, 2007, Catalytic efficiency and kcat/KM: a useful comparator?, Trends Biotechnol., 25, 247, 10.1016/j.tibtech.2007.03.010
Fersht, 1999, 110
Finn, 2014, Systems biology approaches to enzyme kinetics: analyzing network models of drug metabolism, 317
Hanson, 2008, Reactant stationary approximation in enzyme kinetics, J. Phys. Chem. A, 112, 8654, 10.1021/jp8026226
Henri, 1902, Théorie générale de l’action des quelques diastases, C. R. Hebd. Séances Acad. Sci., 135, 916
Henri, 1903
Johnson, 2011, The original Michaelis constant: translation of the 1913 Michaelis–Menten Paper, Biochemistry, 50, 8264, 10.1021/bi201284u
Michaelis, 1913, Die Kinetik der Invertinwirkung, Biochem. Z., 49, 333
Nath, 2008, A quantitative index of substrate promiscuity, Biochemistry, 47, 157, 10.1021/bi701448p
Pandya, 2014, Enzyme promiscuity: engine of evolutionary innovation, J. Biol. Chem., 289, 30229, 10.1074/jbc.R114.572990
Pinto, 2015, Enzyme kinetics: the whole picture reveals hidden meanings, FEBS J., 282, 2309, 10.1111/febs.13275
Schnell, 2000, Enzyme kinetics at high enzyme concentration, Bull. Math. Biol., 62, 483, 10.1006/bulm.1999.0163
Segel, 1988, On the validity of the steady state assumption of enzyme kinetics, Bull. Math. Biol., 50, 579, 10.1016/S0092-8240(88)80057-0
Sols, 1970, Concentrations of metabolites and binding sites. Implications in metabolic regulation, Curr. Top. Cell. Regul., 2, 227, 10.1016/B978-0-12-152802-7.50013-X
Tzafriri, 2003, Michaelis–Menten kinetics at high enzyme concentrations, Bull. Math. Biol., 65, 1111, 10.1016/S0092-8240(03)00059-4
Yang, 2009, Defining balanced conditions for inhibitor screening assays that target bisubstrate enzymes, J. Biomol. Screen., 14, 111, 10.1177/1087057108328763