In search of lost time constants and of non-Michaelis–Menten parameters

Perspectives in Science - Tập 9 - Trang 8-16 - 2016
Maria F. Pinto1,2, Pedro M. Martins1,2
1ICBAS, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira n°. 228, 4050-313 Porto, Portugal
2LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Tài liệu tham khảo

Acker, 2014, Considerations for the design and reporting of enzyme assays in high-throughput screening applications, Persp. Sci., 1, 56 Baici, 2015, 39 Bajzer, 2012, About and beyond the Henri–Michaelis–Menten rate equation for single-substrate enzyme kinetics, Biochem. Biophys. Res. Commun., 417, 982, 10.1016/j.bbrc.2011.12.051 Berberan-Santos, 2010, A general treatment of Henri–Michaelis–Menten enzyme kinetics: exact series solution and approximate analytical solutions, MATCH Commun. Math. Comput. Chem., 63, 283 Bersani, 2011, Asymptotic expansions in enzyme reactions with high enzyme concentrations, Math. Methods Appl. Sci., 34, 1954, 10.1002/mma.1495 Briggs, 1925, A note on the kinetics of enzyme action, Biochem. J., 19, 338, 10.1042/bj0190338 Brown, 1902, Enzyme action, J. Chem. Soc. Trans., 81, 373, 10.1039/CT9028100373 Cornish-Bowden, 1987, The time dimension in steady-state kinetics: a simplified representation of control coefficients, Biochem. Educ., 15, 144, 10.1016/0307-4412(87)90048-3 Cornish-Bowden, 2012, 25 Dormand, 1980, A family of embedded Runge–Kutta formulae, J. Comp. Appl. Math., 6, 19, 10.1016/0771-050X(80)90013-3 Duggleby, 2001, Quantitative analysis of the time courses of enzyme-catalyzed reactions, Methods, 24, 168, 10.1006/meth.2001.1177 Eisenthal, 2007, Catalytic efficiency and kcat/KM: a useful comparator?, Trends Biotechnol., 25, 247, 10.1016/j.tibtech.2007.03.010 Fersht, 1999, 110 Finn, 2014, Systems biology approaches to enzyme kinetics: analyzing network models of drug metabolism, 317 Hanson, 2008, Reactant stationary approximation in enzyme kinetics, J. Phys. Chem. A, 112, 8654, 10.1021/jp8026226 Henri, 1902, Théorie générale de l’action des quelques diastases, C. R. Hebd. Séances Acad. Sci., 135, 916 Henri, 1903 Johnson, 2011, The original Michaelis constant: translation of the 1913 Michaelis–Menten Paper, Biochemistry, 50, 8264, 10.1021/bi201284u Michaelis, 1913, Die Kinetik der Invertinwirkung, Biochem. Z., 49, 333 Nath, 2008, A quantitative index of substrate promiscuity, Biochemistry, 47, 157, 10.1021/bi701448p Pandya, 2014, Enzyme promiscuity: engine of evolutionary innovation, J. Biol. Chem., 289, 30229, 10.1074/jbc.R114.572990 Pinto, 2015, Enzyme kinetics: the whole picture reveals hidden meanings, FEBS J., 282, 2309, 10.1111/febs.13275 Schnell, 2000, Enzyme kinetics at high enzyme concentration, Bull. Math. Biol., 62, 483, 10.1006/bulm.1999.0163 Segel, 1988, On the validity of the steady state assumption of enzyme kinetics, Bull. Math. Biol., 50, 579, 10.1016/S0092-8240(88)80057-0 Sols, 1970, Concentrations of metabolites and binding sites. Implications in metabolic regulation, Curr. Top. Cell. Regul., 2, 227, 10.1016/B978-0-12-152802-7.50013-X Tzafriri, 2003, Michaelis–Menten kinetics at high enzyme concentrations, Bull. Math. Biol., 65, 1111, 10.1016/S0092-8240(03)00059-4 Yang, 2009, Defining balanced conditions for inhibitor screening assays that target bisubstrate enzymes, J. Biomol. Screen., 14, 111, 10.1177/1087057108328763