Hành vi trong mặt phẳng của tường gạch đất sét được tăng cường bằng lớp màng xi măng gia cố sợi vải một mặt và dải sợi carbon gắn sâu

Bulletin of Earthquake Engineering - Tập 18 - Trang 725-765 - 2019
Ö. S. Türkmen1, B. T. De Vries2, S. N. M. Wijte1, A. T. Vermeltfoort1
1Department of the Built Environment, Section Structural Design, Eindhoven, University of Technology, Eindhoven, The Netherlands
2QuakeShield (Joint Venture Royal Oosterhof Holman and SealteQ Group), Grijpskerk, The Netherlands

Tóm tắt

Hành vi cắt trong mặt phẳng của một khái niệm tăng cường động đất mới kết hợp hai biện pháp tăng cường độc lập cho việc gia cố trong mặt phẳng và ngoài mặt phẳng của các bức tường gạch đã được nghiên cứu. Việc gia cố trong mặt phẳng bao gồm một lớp phủ từ sợi carbon gia cố ma trận xi măng (FRCM) ở một mặt, trong khi việc gia cố ngoài mặt phẳng bao gồm các dải polymer gia cố sợi carbon được gắn sâu trong một loại epoxy đàn hồi nhớt. Một chương trình thí nghiệm đã được thực hiện trong đó các mẫu gạch đất sét đã trải qua thử nghiệm nén chéo để đánh giá hiệu quả của hệ thống gia cố đối với hành vi trong mặt phẳng. Kết quả thu được cho thấy lớp phủ FRCM từ sợi carbon một mặt đã tăng cường khả năng cắt lên tới 80% so với các mẫu kiểm soát không được tăng cường. Hơn nữa, bằng cách thử nghiệm hai độ dày khác nhau của lớp phủ FRCM, người ta phát hiện rằng một lớp ma trận dày hơn không làm tăng khả năng cắt của các mẫu gạch. Tuy nhiên, các mẫu gạch được trang bị lớp phủ FRCM dày hơn đã cho thấy một mức độ dẻo hơn cao hơn. Hơn nữa, các kết quả thử nghiệm thu được cho thấy sự hiện diện chỉ của việc gia cố ngoài mặt phẳng nói trên không ảnh hưởng đến độ bền trong mặt phẳng của các mẫu gạch khi bị tải trọng cắt, và thậm chí đã ngăn chặn sự phân hủy sau khi đạt đến tải trọng thất bại so với các mẫu kiểm soát không được tăng cường. Cuối cùng, một mô hình phân tích hiện có cũng như các quy định thiết kế Eurocode 8 đã được so sánh với các cơ chế thất bại và tải trọng thất bại đã tìm thấy. Mô hình phân tích được phát triển cho thấy sự tương ứng tốt với các giá trị thí nghiệm cho cả cơ chế thất bại và tải trọng thất bại, với tỷ lệ thí nghiệm/mô hình $$\left( \varphi \right)$$ là 0.98, trong khi Eurocode 8 cho thấy dẫn đến các giá trị bảo thủ.

Từ khóa

#tường gạch đất sét #tăng cường động đất #sợi carbon #màng xi măng gia cố #phân tích #Eurocode 8

Tài liệu tham khảo

AC434-13 (2013) Acceptance criteria for masonry and concrete strengthening using fiber reinforced cementitious matrix (FRCM) composite systems. ICC Evaluation Service, Whittier, CA Almeida JA, Pereira EB, Barros JA (2015) Assessment of overlay masonry strengthening system under in-plane monotonic and cyclic loading using the diagonal tensile test. Constr Build Mater 94:851–865. https://doi.org/10.1016/j.conbuildmat.2015.07.040 American Concrete Institute (ACI) (2013) Committee 549. Design and construction guide of externally bonded FRCM systems for concrete and masonry repair and strengthening Arboleda D, Babaeidarabad S, Hays C, Nanni A (2014) Durability of fabric reinforced cementitious matrix (FRCM) composites. In Proceedings 7th international conference on FRP composites in civil engineering, CICE ASCE, SEI 41–13 (2014) Seismic evaluation and retrofit of existing buildings. American Society of Civil Engineers, Reston, VA. ISBN 978-0-7844-7791-5 ASTM (2007) C1006-07: standard test method for splitting tensile strength of masonry units, 2007. ASTM International, West Conshohocken, PA ASTM (2010) E519/E519M-10: Standard test method for diagonal tension (shear) in masonry assemblages. ASTM International, West Conshohocken, PA Babaeidarabad S, De Caso F, Nanni A (2013) URM walls strengthened with mesh-reinforced cementitious matrix composite subjected to diagonal compression. J Compos Constr. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000441 Babaeidarabad S, Arboleda D, Loreto G, Nanni A (2014) Shear strengthening of un-reinforced concrete masonry walls with mesh-reinforced-cementitious-matrix. Constr Build Mater 65:243–253. https://doi.org/10.1016/j.conbuildmat.2014.04.116 Banijamali SM, Esfahani MR, Nosratollahi S, Sohrabi MR, Mousavi SR (2015) Reviewing the FRP strengthening systems. Am J Civ Eng 3(2–2):38–43 Bourne S, Oates S (2017) Development of statistical geomechanical models for forecasting seismicity induced by gas production from the Groningen field. Neth J Geosci 96(5):S175–S182. https://doi.org/10.1017/njg.2017.35 Cascardi A, Micelli F, Aiello MA (2016) Analytical model based on artificial neural network for masonry shear walls strengthened with FRM systems. Compos B Eng 95:252–263. https://doi.org/10.1016/j.compositesb.2016.03.066 Cattari S, Lagomarsino S, Bazzurro A, Porta F, Pampanin S (2015) Critical review of analytical models for the in-plane and out-of-plane assessment of URM buildings. In: Proceedings of new dimensions in earthquake resilience–2015 NZSEE technical conference and AGM, Rotorua, New Zealand, pp 10–12 Ceroni F, Salzano P (2018) Design provisions for FRCM systems bonded to concrete and masonry elements. Compos B Eng 143:230–242. https://doi.org/10.1016/j.compositesb.2018.01.033 Crisafulli FJ, Carr AJ, Park R (1995) Shear strength of unreinforced masonry panels. Proc Pac Conf Earthq Eng 3:77–86 Derkowski W, Kwiecień A, Zając B (2013) CFRP strengthening of bent RC elements using stiff and flexible adhesives. Tech Trans 1-B/2013:37–52 Dizhur D, Griffith MC, Ingham JM (2014) Pullout strength of NSM CFRP strips bonded to vintage clay brick masonry. Eng Struct 69:25–36. https://doi.org/10.1016/j.engstruct.2014.02.006 Donnini J, Corinaldesi V (2017) Mechanical characterization of different FRCM systems for structural reinforcement. Constr Build Mater 145:565–575. https://doi.org/10.1016/j.conbuildmat.2017.04.051 European Committee for Standardization (1998) NEN-EN 1052-1:1998: methods of test for masonry—part 1: determination of compressive strength. European Committee for Standardization, Brussels, Belgium European Committee for Standardization (2005a) Eurocode 8: Design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels, Belgium European Committee for Standardization (2005b) Eurocode 8: design of structures for earthquake resistance—part 3: assessment and retrofitting of buildings. European Committee for Standardization, Brussels, Belgium European Committee for Standardization (2006) Eurocode 6: design of masonry structures—part 1-1: general rules for reinforced and unreinforced masonry structures. European Committee for Standardization, Brussels, Belgium European Committee for Standardization (2007a) EN 1015-11:1999/A1:2007: Methods of test for mortar for masonry—part 11: determination of flexural and compressive strength of hardened mortar. European Committee for Standardization, Brussels, Belgium European Committee for Standardization (2007b) EN 1052-3:2002/A1:2007: methods of test for masonry—part 3: determination of initial shear strength. European Committee for Standardization, Brussels, Belgium European Committee for Standardization (2015) EN 772-1:2011 + A1:2015: methods of test for masonry units—part 1: determination of compressive strength. European Committee for Standardization, Brussels, Belgium Gattesco N, Boem I (2015) Experimental and analytical study to evaluate the effectiveness of an in-plane reinforcement for masonry walls using GFRP meshes. Constr Build Mater 88:94–104. https://doi.org/10.1016/j.conbuildmat.2015.04.014 Grande E, Imbimbo M, Sacco E (2018) Numerical investigation on the bond behavior of FRCM strengthening systems. Compos B Eng 145:240–251. https://doi.org/10.1016/j.compositesb.2018.03.010 Ianniruberto U, Rinaldi Z (2001) Influence of FRP reinforcement on the local ductility of R.C elements. In: Proceedings of the international conference on FRP composites in civil engineering Hong Kong Institution of Engineers, Hong Kong Institution of Steel Construction (No. volume 1) Ismail N (2012) Selected strengthening techniques for the seismic retrofit of unreinforced masonry buildings (Doctoral dissertation). Retrieved from https://researchspace.auckland.ac.nz/bitstream/handle/2292/19106/whole.pdf?sequence=2. Accessed 2 Oct 2018 ISO (2012) 527-1. Plastics. Determination of tensile properties. Part, 1 Jafari S, Rots JG, Esposito R, Messali F (2017) Characterizing the material properties of dutch unreinforced masonry. Proc Eng 193:250–257. https://doi.org/10.1016/j.proeng.2017.06.211 Kolyvas C, Bal İE, Bernakos A, Triantafillou T (2012) Design examples of a textile mortar system for strengthening of historical masonry structures. In: 10th International Congress on Advances in Civil Engineering, 17–19 October 2012 Middle East Technical University, Ankara, Turkey Kwiecień A (2012) Stiff and flexible adhesives bonding CFRP to masonry substrates—investigated in pull-off test and single-lap test. Arch Civ Mech Eng 12(2):228–239. https://doi.org/10.1016/j.acme.2012.03.015 Li T, Galati N, Tumialan JG, Nanni A (2005) Analysis of unreinforced masonry concrete walls strengthened with glass fiber-reinforced polymer bars. ACI Struct J 102(4):569–577 Mann W, Muller H (1982) Failure of shear-stressed masonry. An enlarged theory, tests and application to shear walls. In: Proceedings of British Ceramic Society, no 30, p 223 Mantegazza G, Gatti A, Barbieri A (2006) Retrofitting concrete and masonry building: FRCM (fiber reinforced cementitious matrix) a new emerging technology, XII Konferencja Naukowo-Techniczna Problemy Remontowe W Budownictwie Ogólnym i Obiektach Zabytkowych REMO, 6–8, 2006 Nanni A (2012) A new tool for concrete and masonry repair. Concr Int 34(4):1–7 NEN (2018) NPR 9998:2018: Beoordeling van de constructieve veiligheid van een gebouw bij nieuwbouw, verbouw en afkeuren – Grondslagen voor aardbevingsbelastingen: geïnduceerde aardbevingen. Nederlands Normalisatie-instituut, Delft Papanicolaou CG, Triantafillou TC, Papathanasiou M, Karlos K (2008) Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading. Mater Struct 41(1):143–157. https://doi.org/10.1617/s11527-007-9226-0 Parisi F, Menna C, Prota A (2019) Mesh-reinforced cementitious matrix (FRCM) composites: mechanical behavior and application to masonry walls. In: Jawaid M, Thariq M, Saba N (eds) Failure analysis in biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, pp 199–227. https://doi.org/10.1016/B978-0-08-102293-1.00010-3 Petersen RB (2009) In-plane shear behaviour of unreinforced masonry panels strengthened with fibre reinforced polymer strips (Doctoral dissertation). http://ogma.newcastle.edu.au:8080/vital/access/services/Download/uon:5837/ATTACHMENT02. Accessed 3 Oct 2018 Petersen RB, Masia MJ, Seracino R (2009) Bond behaviour of near-surface mounted FRP strips bonded to modern clay brick masonry prisms: influence of strip orientation and compression perpendicular to the strip. J Compos Constr 13(3):169–178. https://doi.org/10.1061/(asce)cc.1943-5614.0000002 Prota A, Marcari G, Fabbrocino G, Manfredi G, Aldea C (2006) Experimental in-plane behavior of tuff masonry strengthened with cementitious matrix–grid composites. J Compos Constr 10(3):223–233. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:3(223) Seracino R, Jones NM, Ali MS, Page MW, Oehlers DJ (2007) Bond strength of near-surface mounted FRP strip-to-concrete joints. J Compos Constr 11(4):401–409. https://doi.org/10.1061/(asce)1090-0268(2007)11:4(401) Silva PF, Yu P, Nanni A (2008) Monte Carlo simulation of shear capacity of URM walls retrofitted by polyurea reinforced GFRP grid. J Compos Constr 12(4):405–415. https://doi.org/10.1061/(asce)1090-0268(2008)12:4(405) Triantafillou TC (1998) Strengthening of masonry structures using epoxy-bonded FRP laminates. J Compos Constr 2(2):96–104 Triantafillou TC (2016) In: Triantafillou T (ed) Textile fibre composites in civil engineering., pp 375–388. https://doi.org/10.1016/B978-1-78242-446-8.00017-3 Türkmen ÖS, Vermeltfoort AT, Martens DRW (2016) Seismic retrofit system for single leaf masonry buildings in Groningen. In: Proceedings of 16th international brick and block masonry conference, 26–30 June 2016, Padova, Italy, pp 1–8 Türkmen ÖS, Wijte SNM, Vermeltfoort AT, Martens DRW (2017) Experiments to determine the out-of-plane behavior of CFRP and ductile adhesive reinforced clay brick masonry walls. In: Proceedings 13th Canadian masonry symposium Türkmen ÖS, De Vries BT, Wijte SNM, Vermeltfoort AT (2018). Static-cyclic in-plane tests on clay brick masonry retrofitted with a single sided fabric-reinforced cementitious matrix layer, deep mounted CFRP strips and flexible anchor connection. In: Paper presented at 10th international masonry conference, Milan, Italy Türkmen ÖS, Wijte SNM, Ingham JM, Vermeltfoort AT (2018) Bond slip behaviour of deep mounted carbon fibre reinforced polymer strops confined with a ductile adhesive in clay brick masonry. In: Masia M, Alternam D, Totoev Y, Page A (eds) Proceedings of 10th Australasian masonry conference: masonry today and tomorrow, blz. 672–686 Van Thienen-Visser K, Breunese JN (2015) Induced seismicity of the Groningen gas field: History and recent developments. Lead Edge 34(6):664–671. https://doi.org/10.1190/tle34060664.1 West ASTM (2003) ASTM C67-03a, standard test methods for sampling and testing brick and structural clay tile. ASTM International, Conshohocken, PA