In Vitro and In Vivo Magnetic Resonance Tracking of Sinerem-Labeled Human Umbilical Mesenchymal Stromal Cell-Derived Schwann Cells

Springer Science and Business Media LLC - Tập 31 - Trang 365-375 - 2010
Qiang Xu1,2,3,4, Hong-Tian Zhang2, Ke Liu3, Jun-Hua Rao4, Xiao-Ming Liu4, Li Wu5, Bai-Nan Xu1
1Department of Neurosurgery, The General Hospital of PLA, Beijing, China
2Department of Neurosurgery, the Military General Hospital of Beijing PLA, Beijing, China
3Department of Neurosurgery, Huadu Hospital, Southern Medical University, Guangzhou, China
4Guangdong Landau Biotechnology Co. Ltd, Guangzhou, China
5The Second Cadre Sanatorium of Tianjin Garrison of the PLA, Tianjin, China

Tóm tắt

Tracking of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles-labeled embryonic stem cells, neural stem cells, or adult mesenchymal stem cells in vitro and in vivo by using magnetic resonance (MR) imaging have been reported. However, whether the transdifferentiated cells can be effectively labeled by USPIO has not yet been investigated. The requirement for nerve donor material evokes additional morbidity and inability to generate a sufficiently large number of cells in a short time to hamper the clinic application of Schwann cells (SCs) transplantation. These limitations may be avoided if SCs can be generated from clinically accessible sources, such as bone marrow and umbilical cord. However, a reliable means of inducing the selective differentiation of human mesenchymal stromal cells isolated from the umbilical cord (HUMSCs) into SCs in vitro has not yet been established. In this study, we induce HUMSCs into Schwann-like cells in terms of morphology, phenotype, and function by an improved protocol basing on our previous studies. Furthermore, HUMSCs-derived SCs are labeled efficiently in vitro with ultrasmall superparamagnetic iron oxide contrast agent (USPIO) Sinerem and poly-l-lysine (PLL) without affecting morphology, cell cycle, proliferation, and differentiation ability of the labeled cells between the concentration of 200 to 800 μg/ml. Importantly, when grafted into the intact cerebral cortex and striatum, the survival and migration of these Sinerem-labeled cells were observed using MRI. Our study suggest the effective concentration field for Sinerem use in tracking transdifferentiated HUMSCs, and Sinerem labeling transdifferentiated HUMSCs is feasible, efficient, and safe for MRI tracing following grafting into nervous system.

Tài liệu tham khảo

Caddick J, Kingham PJ, Gardiner NJ, Wiberg M, Terenghi G (2006) Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia 54:840–849 Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3:e1451 Croft AP, Przyborski SA (2006) Formation of neurons by non-neural adult stem cells: potential mechanism implicates an artifact of growth in culture. Stem Cells 24:1841–1851 Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H (2001) Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 14:1771–1776 Fu YS, Shih YT, Cheng YC, Min MY (2004) Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci 11:652–660 Fu L, Zhu L, Huang Y, Lee TD, Forman SJ, Shih CC (2008) Derivation of neural stem cells from mesenchymal stemcells: evidence for a bipotential stem cell population. Stem Cells Dev 17:1109–1121 Golden KL, Pearse DD, Blits B, Garg MS, Oudega M, Wood PM, Bunge MB (2007) Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp Neurol 207:203–217 Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO, Maisel M, Lerche H, Schwarz J, Brenner R, Storch A (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117:4411–4422 Ittrich H, Lange C, Dahnke H, Zander AR, Adam G, Nolte-Ernsting C (2005) Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T. Rofo 177:1151–1163 Keilhoff G, Goihl A, Langnase K, Fansa H, Wolf G (2006) Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol 85:11–24 Lee IH, Bulte JW, Schweinhardt P, Douglas T, Trifunovski A, Hofstetter C, Olson L, Spenger C (2004) In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187:509–516 Li Q, Ping P, Jiang H, Liu K (2006) Nerve conduit filled with GDNF gene-modified Schwann cells enhances regeneration of the peripheral nerve. Microsurgery 26:116–121 Louro J, Pearse DD (2008) Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res 30:5–16 Ma L, Feng XY, Cui BL, Law F, Jiang XW, Yang LY, Xie QD, Huang TH (2005) Human umbilical cord Wharton’s jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin Med J (Engl) 118:1987–1993 Mosahebi A, Fuller P, Wiberg M, Terenghi G (2002) Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol 173:213–223 Neri M, Maderna C, Cavazzin C, Deidda-Vigoriti V, Politi LS, Scotti G, Marzola P, Sbarbati A, Vescovi AL, Gritti A (2008) Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles: relevance for in vivo cell tracking. Stem Cells 26:505–516 Sharma R, Saini S, Ros PR, Hahn PF, Small WC, de Lange EE, Stillman AE, Edelman RR, Runge VM, Outwater EK, Morris M, Lucas M (1999) Safety profile of ultrasmall superparamagnetic iron oxide ferumoxtran-10: phase II clinical trial data. J Magn Reson Imaging 9:291–294 Song M, Moon WK, Kim Y, Lim D, Song IC, Yoon BW (2007) Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells: comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Korean J Radiol 8:365–371 Terrovitis JV, Bulte JW, Sarvananthan S, Crowe LA, Sarathchandra P, Batten P, Sachlos E, Chester AH, Czernuszka JT, Firmin DN, Taylor PM, Yacoub MH (2006) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds-relevance to tissue engineering. Tissue Eng 12:2765–2775 Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26:591–599 Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337 Wislet-Gendebien S, Leprince P, Moonen G, Rogister B (2003) Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. J Cell Sci 116:3295–3302 Wislet-Gendebien S, Bruyere F, Hans G, Leprince P, Moonen G, Rogister B (2004) Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neurosci 5:33 Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS One 3:e3336 Zhang HT, Cheng HY, Zhang L, Fan J, Chen YZ, Jiang XD, Xu RX (2009) Umbilical cord blood cell-derived neurospheres differentiate into Schwann-like cells. Neuroreport 20:354–359 Zhang HT, Fan J, Cai YQ, Zhao SJ, Xue S, Lin JH, Jiang XD, Xu RX (2010) Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. Differentiation 79:15–20