In Situ Acoustic Diagnostics of Particle-Binder Interactions in Battery Electrodes
Tài liệu tham khảo
Delmas, 2008, Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model, Nat. Mater., 7, 665, 10.1038/nmat2230
Laffont, 2006, Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy, Chem. Mater., 18, 5520, 10.1021/cm0617182
Malik, 2011, Kinetics of non-equilibrium lithium incorporation in LiFePO4, Nat. Mater., 10, 587, 10.1038/nmat3065
Padhi, 1997, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 144, 1188, 10.1149/1.1837571
Wang, 2014, In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy, Nat. Commun., 5, 4570, 10.1038/ncomms5570
Yamada, 2001, Phase diagram of Lix(MnyFe1-y)PO4 (0≤x, y≤1), J. Electrochem. Soc., 148, A1153, 10.1149/1.1401083
Dreyer, 2010, The thermodynamic origin of hysteresis in insertion batteries, Nat. Mater., 9, 448, 10.1038/nmat2730
Tang, 2010, Electrochemically driven phase transitions in insertion electrodes for lithium-ion batteries: examples in lithium metal phosphate olivines, Annu. Rev. Mater. Res., 40, 501, 10.1146/annurev-matsci-070909-104435
Galceran, 2014, The mechanism of NaFePO₄ (de)sodiation determined by in situ X-ray diffraction, Phys. Chem. Chem. Phys., 16, 8837, 10.1039/C4CP01089B
Xiang, 2017, Accommodating high transformation strains in battery electrodes via the formation of nanoscale intermediate phases: operando investigation of olivine NaFePO4, Nano Lett., 17, 1696, 10.1021/acs.nanolett.6b04971
Limthongkul, 2003, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage, Acta Mater., 51, 1103, 10.1016/S1359-6454(02)00514-1
Arnau, 2008, A review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids, Sensors, 8, 370, 10.3390/s8010370
Daikhin, 2011, Quartz crystal impedance response of nonhomogenous composite electrodes in contact with liquids, Anal. Chem., 83, 9614, 10.1021/ac202410q
Höök, 2001, Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study, Anal. Chem., 73, 5796, 10.1021/ac0106501
Johannsmann, 2015, 1
Shpigel, 2016, In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes, Nat. Mater., 15, 570, 10.1038/nmat4577
Levi, 2017, In situ porous structure characterization of electrodes for energy storage and conversion by EQCM-D: a review, Electrochim. Acta, 232, 271, 10.1016/j.electacta.2017.02.149
Shpigel, 2018, In situ real-time mechanical and morphological characterization of electrodes for electrochemical energy storage and conversion by electrochemical quartz crystal microbalance with dissipation monitoring, Acc. Chem. Res., 51, 69, 10.1021/acs.accounts.7b00477
Shpigel, 2017, In situ monitoring of gravimetric and viscoelastic changes in 2D intercalation electrodes, ACS Energy Lett., 2, 1407, 10.1021/acsenergylett.7b00133
Eisele, 2012, Viscoelasticity of thin biomolecular films: a case study on nucleoporin phenylalanine-glycine repeats grafted to a histidine-tag capturing QCM-D sensor, Biomacromolecules, 13, 2322, 10.1021/bm300577s
Voinova, 1999, Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach, Phys. Scripta, 59, 391, 10.1238/Physica.Regular.059a00391
Dargel, 2017, In situ multilength-scale tracking of dimensional and viscoelastic changes in composite battery electrodes, ACS Appl. Mater. Interfaces, 9, 27664, 10.1021/acsami.7b06243
Dargel, 2017, In situ real-time gravimetric and viscoelastic probing of surface films formation on lithium batteries electrodes, Nat. Commun., 8, 1389, 10.1038/s41467-017-01722-x
Levi, 2013, In situ tracking of ion insertion in iron phosphate olivine electrodes via electrochemical quartz crystal admittance, J. Phys. Chem. C, 117, 1247, 10.1021/jp3117819
Sauvage, 2004, Pulsed laser deposition and electrochemical properties of LiFePO4 thin films, Electrochem. SolidState Lett., 7, A15, 10.1149/1.1630411
Casas-Cabanas, 2012, Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4, J. Mater. Chem., 22, 17421, 10.1039/c2jm33639a
Maxisch, 2006, Elastic properties of olivine LixFePO4 from first principles, Phys. Rev. B, 73, 1, 10.1103/PhysRevB.73.174112
Ward, 1971, Review: the yield behaviour of polymers, J. Mater. Sci., 6, 1397, 10.1007/BF00549685
Roylance, 2001
Hillman, 2011, Time-temperature superposition and the controlling role of solvation in the viscoelastic properties of polyaniline thin films, Anal. Chem., 83, 5696, 10.1021/ac200901d
Bin Imran, 2014, Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network, Nat. Commun., 5, 5124, 10.1038/ncomms6124
Choi, 2016, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater., 1, 16013, 10.1038/natrevmats.2016.13
Choi, 2017, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries, Science, 357, 279, 10.1126/science.aal4373
Jeong, 2014, Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries, Nano Lett., 14, 864, 10.1021/nl404237j