In Situ Acoustic Diagnostics of Particle-Binder Interactions in Battery Electrodes

Joule - Tập 2 - Trang 988-1003 - 2018
Netanel Shpigel1, Sergey Sigalov1, Mikhael D. Levi1, Tyler Mathis2, Leonid Daikhin3, Alar Janes4, Enn Lust4, Yury Gogotsi2, Doron Aurbach1
1Department of Chemistry and BINA – BIU Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
2Department of Materials Science and Engineering, A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA
3School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Ramat Aviv 6997801, Israel
4Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia

Tài liệu tham khảo

Delmas, 2008, Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model, Nat. Mater., 7, 665, 10.1038/nmat2230 Laffont, 2006, Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy, Chem. Mater., 18, 5520, 10.1021/cm0617182 Malik, 2011, Kinetics of non-equilibrium lithium incorporation in LiFePO4, Nat. Mater., 10, 587, 10.1038/nmat3065 Padhi, 1997, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 144, 1188, 10.1149/1.1837571 Wang, 2014, In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy, Nat. Commun., 5, 4570, 10.1038/ncomms5570 Yamada, 2001, Phase diagram of Lix(MnyFe1-y)PO4 (0≤x, y≤1), J. Electrochem. Soc., 148, A1153, 10.1149/1.1401083 Dreyer, 2010, The thermodynamic origin of hysteresis in insertion batteries, Nat. Mater., 9, 448, 10.1038/nmat2730 Tang, 2010, Electrochemically driven phase transitions in insertion electrodes for lithium-ion batteries: examples in lithium metal phosphate olivines, Annu. Rev. Mater. Res., 40, 501, 10.1146/annurev-matsci-070909-104435 Galceran, 2014, The mechanism of NaFePO₄ (de)sodiation determined by in situ X-ray diffraction, Phys. Chem. Chem. Phys., 16, 8837, 10.1039/C4CP01089B Xiang, 2017, Accommodating high transformation strains in battery electrodes via the formation of nanoscale intermediate phases: operando investigation of olivine NaFePO4, Nano Lett., 17, 1696, 10.1021/acs.nanolett.6b04971 Limthongkul, 2003, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage, Acta Mater., 51, 1103, 10.1016/S1359-6454(02)00514-1 Arnau, 2008, A review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids, Sensors, 8, 370, 10.3390/s8010370 Daikhin, 2011, Quartz crystal impedance response of nonhomogenous composite electrodes in contact with liquids, Anal. Chem., 83, 9614, 10.1021/ac202410q Höök, 2001, Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking:  a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study, Anal. Chem., 73, 5796, 10.1021/ac0106501 Johannsmann, 2015, 1 Shpigel, 2016, In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes, Nat. Mater., 15, 570, 10.1038/nmat4577 Levi, 2017, In situ porous structure characterization of electrodes for energy storage and conversion by EQCM-D: a review, Electrochim. Acta, 232, 271, 10.1016/j.electacta.2017.02.149 Shpigel, 2018, In situ real-time mechanical and morphological characterization of electrodes for electrochemical energy storage and conversion by electrochemical quartz crystal microbalance with dissipation monitoring, Acc. Chem. Res., 51, 69, 10.1021/acs.accounts.7b00477 Shpigel, 2017, In situ monitoring of gravimetric and viscoelastic changes in 2D intercalation electrodes, ACS Energy Lett., 2, 1407, 10.1021/acsenergylett.7b00133 Eisele, 2012, Viscoelasticity of thin biomolecular films: a case study on nucleoporin phenylalanine-glycine repeats grafted to a histidine-tag capturing QCM-D sensor, Biomacromolecules, 13, 2322, 10.1021/bm300577s Voinova, 1999, Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach, Phys. Scripta, 59, 391, 10.1238/Physica.Regular.059a00391 Dargel, 2017, In situ multilength-scale tracking of dimensional and viscoelastic changes in composite battery electrodes, ACS Appl. Mater. Interfaces, 9, 27664, 10.1021/acsami.7b06243 Dargel, 2017, In situ real-time gravimetric and viscoelastic probing of surface films formation on lithium batteries electrodes, Nat. Commun., 8, 1389, 10.1038/s41467-017-01722-x Levi, 2013, In situ tracking of ion insertion in iron phosphate olivine electrodes via electrochemical quartz crystal admittance, J. Phys. Chem. C, 117, 1247, 10.1021/jp3117819 Sauvage, 2004, Pulsed laser deposition and electrochemical properties of LiFePO4 thin films, Electrochem. SolidState Lett., 7, A15, 10.1149/1.1630411 Casas-Cabanas, 2012, Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4, J. Mater. Chem., 22, 17421, 10.1039/c2jm33639a Maxisch, 2006, Elastic properties of olivine LixFePO4 from first principles, Phys. Rev. B, 73, 1, 10.1103/PhysRevB.73.174112 Ward, 1971, Review: the yield behaviour of polymers, J. Mater. Sci., 6, 1397, 10.1007/BF00549685 Roylance, 2001 Hillman, 2011, Time-temperature superposition and the controlling role of solvation in the viscoelastic properties of polyaniline thin films, Anal. Chem., 83, 5696, 10.1021/ac200901d Bin Imran, 2014, Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network, Nat. Commun., 5, 5124, 10.1038/ncomms6124 Choi, 2016, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater., 1, 16013, 10.1038/natrevmats.2016.13 Choi, 2017, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries, Science, 357, 279, 10.1126/science.aal4373 Jeong, 2014, Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries, Nano Lett., 14, 864, 10.1021/nl404237j