In-Plane and Out-Of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics

Journal of Heat Transfer - Tập 128 Số 11 - Trang 1114-1121 - 2006
Carlos J. Gomes1, Marcela Madrid2, Javier V. Goicochea1, Cristina H. Amon3,4
1Department of Mechanical Engineering and Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA 15213-3890
2Pittsburgh Supercomputing Center and Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA 15213-3890
3ASME Life Fellow
4Raymond Lane Distinguished Professor, Department of Mechanical Engineering and Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA 15213-3890

Tóm tắt

The thermal conductivity of silicon thin films is predicted in the directions parallel and perpendicular to the film surfaces (in-plane and out-of-plane, respectively) using equilibrium molecular dynamics, the Green-Kubo relation, and the Stillinger-Weber interatomic potential. Three different boundary conditions are considered along the film surfaces: frozen atoms, surface potential, and free boundaries. Film thicknesses range from 2to217nm and temperatures from 300to1000K. The relation between the bulk phonon mean free path (Λ) and the film thickness (ds) spans from the ballistic regime (Λ⪢ds) at 300K to the diffusive, bulk-like regime (Λ⪡ds) at 1000K. When the film is thin enough, the in-plane and out-of-plane thermal conductivity differ from each other and decrease with decreasing film thickness, as a consequence of the scattering of phonons with the film boundaries. The in-plane thermal conductivity follows the trend observed experimentally at 300K. In the ballistic limit, in accordance with the kinetic and phonon radiative transfer theories, the predicted out-of-plane thermal conductivity varies linearly with the film thickness, and is temperature-independent for temperatures near or above the Debye’s temperature.

Từ khóa


Tài liệu tham khảo

International Technology Roadmap for Semiconductors

Cahill, Nanoscale Thermal Transport, J. Appl. Phys., 93, 793, 10.1063/1.1524305

Li, Thermal Transport in Nanostructured Solid-State Cooling Devices, ASME J. Heat Transfer, 127, 108, 10.1115/1.1839588

Yang, Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation, ASME J. Heat Transfer, 127, 298, 10.1115/1.1857941

Srivastava, The Physics of Phonons, 175

Hone, Thermal Properties of Carbon Nanotubes and Nanotube-Based Materials, Appl. Phys. A, A74, 339, 10.1007/s003390201277

Dresselhaus, Electronic, Thermal and Mechanical Properties of Carbon Nanotubes, Philos. Trans. R. Soc. London, Ser. A, 362, 2065, 10.1098/rsta.2004.1430

Zhong, Thermal Conductivity of Single-Wall Carbon Nanotubes, Proc. ASME International Mechanical Engineering Congress and Exposition, 10.1115/IMECE2004-61665

Volz, Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires, Appl. Phys. Lett., 75, 2056, 10.1063/1.124914

Li, Thermal Conductivity of Individual Silicon Nanowires, Appl. Phys. Lett., 83, 2934, 10.1063/1.1616981

Li, Thermal Conductivity of Si∕SiGe Superlattice Nanowires, Appl. Phys. Lett., 83, 3186, 10.1063/1.1619221

Ju, Phonon Scattering in Silicon Thin Films with Thickness of Order 100nm, Appl. Phys. Lett., 74, 3005, 10.1063/1.123994

Liu, Phonon-Boundary Scattering in Ultrathin Single-Crystal Silicon Layers, Appl. Phys. Lett., 84, 3819, 10.1063/1.1741039

Liu, Thermal Conductivity in Ultra-Thin Pure and Doped Single Crystal Silicon Layers at High Temperatures, Proc. ASME Summer Heat Transfer Conference

Volz, Computation of Thermal Conductivity of Si∕Ge Superlattice by Molecular Dynamics Technique, Microelectron. J., 31, 815, 10.1016/S0026-2692(00)00064-1

Abramson, Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study, ASME J. Heat Transfer, 124, 963, 10.1115/1.1495516

Daly, Calculation of the Thermal Conductivity of Superlattices by Molecular Dynamics Simulation, Physica B, 316–317, 247

Asheghi, Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates, ASME J. Heat Transfer, 120, 30, 10.1115/1.2830059

Liu, Thermal Conductivity of Ultra Thin Single Crystal Silicon Layers, Part 1—Experimental Measurements at Room and Cryogenic Temperatures, Proc. ASME International Mechanical Engineering Congress and Exposition, 10.1115/IMECE2004-62105

Majumdar, Effect of Gate Voltage on Hot-Electron and Hot-Phonon Interaction and Transport in a Submicrometer Transistor, J. Appl. Phys., 77, 6686, 10.1063/1.359082

Fushinobu, Heat Generation and Transport in Submicron Semiconductor Devices, ASME J. Heat Transfer, 117, 25, 10.1115/1.2822317

Lai, Concurrent Thermal and Electrical Modeling of Sub-Micrometer Silicon Devices, J. Appl. Phys., 79, 7353, 10.1063/1.361424

Narumanchi, Simulation of Unsteady Small Heat Source Effects in Sub-Micron Heat Conduction, ASME J. Heat Transfer, 125, 896, 10.1115/1.1603774

Narumanchi, Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization, ASME J. Heat Transfer, 126, 946, 10.1115/1.1833367

Amon, Modeling of Nanoscale Transport Phenomena: Application to Information Technology, Physica A, 362, 36, 10.1016/j.physa.2005.09.014

Escobar, Lattice Boltzmann Modeling of Subcontinuum Energy Transport in Crystalline and Amorphous Microelectronic Devices, ASME J. Electron. Packag., 128, 115, 10.1115/1.2188951

Escobar, Multi-Length and Time Scale Thermal Transport Using the Lattice Boltzmann Method With Applications to Electronics Cooling, Int. J. Heat Mass Transfer, 49, 97, 10.1016/j.ijheatmasstransfer.2005.08.003

Ghai, A Novel Heat Transfer Model and Its Application to Information Storage Systems, J. Appl. Phys., 97, 10P703, 10.1063/1.1853896

Narumanchi, Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors, ASME J. Heat Transfer, 127, 713, 10.1115/1.1924571

Narumanchi, Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics, Heat Mass Transfer, 42, 478, 10.1007/s00231-005-0645-6

Klitsner, Phonon Radiative Heat Transfer and Surface Scattering, Phys. Rev. B, 38, 7576, 10.1103/PhysRevB.38.7576

Peterson, Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal, ASME J. Heat Transfer, 116, 815, 10.1115/1.2911452

Mazumder, Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization, ASME J. Heat Transfer, 123, 749, 10.1115/1.1377018

Chen, Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity, ASME J. Heat Transfer, 127, 1129, 10.1115/1.2035114

Li, Atomistic Modeling of Finite-Temperature Properties of Crystalline β-SiC. II. Thermal Conductivity and Effects of Point Defects, J. Nucl. Mater., 255, 139, 10.1016/S0022-3115(98)00034-8

Lukes, Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity, ASME J. Heat Transfer, 122, 536, 10.1115/1.1288405

Volz, Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals, Phys. Rev. B, 61, 2651, 10.1103/PhysRevB.61.2651

Schelling, Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity, Phys. Rev. B, 65, 144306, 10.1103/PhysRevB.65.144306

Gomes, Thin Film In-Plane Thermal Conductivity Dependence on Molecular Dynamics Surface Boundary Conditions, Proc. ASME International Mechanical Engineering Congress and Exposition, 10.1115/IMECE2004-62264

McGaughey, Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part II. Complex Silica Structures, Int. J. Heat Mass Transfer, 47, 1799, 10.1016/j.ijheatmasstransfer.2003.11.009

Che, Thermal Conductivity of Diamond and Related Materials From Molecular Dynamics Simulations, J. Chem. Phys., 113, 6888, 10.1063/1.1310223

Volz, Lattice Dynamic Simulation of Silicon Thermal Conductivity, Physica B, 263–264, 709

Gomes, Parallel Molecular Dynamics Code Validation Through Bulk Silicon Thermal Conductivity Calculations, Proc. ASME International Mechanical Engineering Congress and Exposition, 10.1115/IMECE2003-42352

Che, Thermal Conductivity of Carbon Nanotubes, Nanotechnology, 11, 65, 10.1088/0957-4484/11/2/305

Lee, Molecular-Dynamics Simulation of Thermal Conductivity in Amorphous Silicon, Phys. Rev. B, 43, 6573, 10.1103/PhysRevB.43.6573

Ding, Molecular-Dynamics Simulation of Amorphous Germanium, Phys. Rev. B, 34, 6987, 10.1103/PhysRevB.34.6987

Feng, Molecular Dynamics Simulation of Thermal Conductivity of Nanoscale Thin Silicon Films, Microscale Thermophys. Eng., 7, 153, 10.1080/10893950390203332

Weakliem, Constant Temperature Molecular Dynamics Simulations of Si(100) and Ge(100): Equilibrium Structure and Short-Time Behavior, J. Chem. Phys., 96, 3240, 10.1063/1.461968

Yu, Molecular Dynamics Simulation of the Surface Reconstruction and Strain Relief in Si1−xGex∕Si(100) Heterostructures, Modell. Simul. Mater. Sci. Eng., 2, 829, 10.1088/0965-0393/2/4/003

Chantrenne, Finite Size Effects in Determination of Thermal Conductivities: Comparing Molecular Dynamics Results With Simple Models, ASME J. Heat Transfer, 126, 577, 10.1115/1.1777582

Stillinger, Computer Simulation of Local Order in Condensed Phases of Silicon, Phys. Rev. B, 31, 5262, 10.1103/PhysRevB.31.5262

Broughton, Phase Diagram of Silicon by Molecular Dynamics, Phys. Rev. B, 35, 9120, 10.1103/PhysRevB.35.9120

Cook, Comparison of Semi-Empirical Potential Functions for Silicon and Germanium, Phys. Rev. B, 47, 7686, 10.1103/PhysRevB.47.7686

Karimi, Elastic Constants of Silicon Using Monte Carlo Simulations, Phys. Rev. B, 58, 6019, 10.1103/PhysRevB.58.6019

Kallman, Molecular Dynamics of Silicon Indentation, Phys. Rev. B, 47, 7705, 10.1103/PhysRevB.47.7705

Allen, Computer Simulation of Liquids, 61

Frenkel, Understanding Molecular Simulation: From Algorithms to Applications, 90

McQuarrie, Statistical Mechanics, 521

Hardy, Energy-Flux Operator for a Lattice, Phys. Rev., 132, 168, 10.1103/PhysRev.132.168

Reif, Fundamentals of Statistical and Thermal Physics, 480

Flubacher, Heat Capacity of Pure Silicon and Germanium and Properties of Their Vibrational Frequency Spectra, Philos. Mag., 4, 273, 10.1080/14786435908233340

Desai, Thermodynamic Properties of Iron and Silicon, J. Phys. Chem. Ref. Data, 15, 967, 10.1063/1.555761

Porter, The Importance of Gruneisen Parameters in Developing Interatomic Potentials, J. Appl. Phys., 82, 5378, 10.1063/1.366305

Ashcroft, Solid State Physics, 461

Aono, Low-Energy Ion Scattering From the Si(001) Surface, Phys. Rev. Lett., 49, 567, 10.1103/PhysRevLett.49.567

Yang, Atomic Structure of Si{001}2×1, Phys. Rev. B, 28, 2049, 10.1103/PhysRevB.28.2049

Ho, Thermal Conductivity of the Elements, J. Phys. Chem. Ref. Data, 1, 279, 10.1063/1.3253100

Majumdar, Microscale Heat Conduction in Dielectric Thin Films, ASME J. Heat Transfer, 115, 7, 10.1115/1.2910673