In-Plane and Out-Of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics
Tóm tắt
Từ khóa
Tài liệu tham khảo
International Technology Roadmap for Semiconductors
Li, Thermal Transport in Nanostructured Solid-State Cooling Devices, ASME J. Heat Transfer, 127, 108, 10.1115/1.1839588
Yang, Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation, ASME J. Heat Transfer, 127, 298, 10.1115/1.1857941
Srivastava, The Physics of Phonons, 175
Hone, Thermal Properties of Carbon Nanotubes and Nanotube-Based Materials, Appl. Phys. A, A74, 339, 10.1007/s003390201277
Dresselhaus, Electronic, Thermal and Mechanical Properties of Carbon Nanotubes, Philos. Trans. R. Soc. London, Ser. A, 362, 2065, 10.1098/rsta.2004.1430
Zhong, Thermal Conductivity of Single-Wall Carbon Nanotubes, Proc. ASME International Mechanical Engineering Congress and Exposition, 10.1115/IMECE2004-61665
Volz, Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires, Appl. Phys. Lett., 75, 2056, 10.1063/1.124914
Li, Thermal Conductivity of Individual Silicon Nanowires, Appl. Phys. Lett., 83, 2934, 10.1063/1.1616981
Li, Thermal Conductivity of Si∕SiGe Superlattice Nanowires, Appl. Phys. Lett., 83, 3186, 10.1063/1.1619221
Ju, Phonon Scattering in Silicon Thin Films with Thickness of Order 100nm, Appl. Phys. Lett., 74, 3005, 10.1063/1.123994
Liu, Phonon-Boundary Scattering in Ultrathin Single-Crystal Silicon Layers, Appl. Phys. Lett., 84, 3819, 10.1063/1.1741039
Liu, Thermal Conductivity in Ultra-Thin Pure and Doped Single Crystal Silicon Layers at High Temperatures, Proc. ASME Summer Heat Transfer Conference
Volz, Computation of Thermal Conductivity of Si∕Ge Superlattice by Molecular Dynamics Technique, Microelectron. J., 31, 815, 10.1016/S0026-2692(00)00064-1
Abramson, Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study, ASME J. Heat Transfer, 124, 963, 10.1115/1.1495516
Daly, Calculation of the Thermal Conductivity of Superlattices by Molecular Dynamics Simulation, Physica B, 316–317, 247
Asheghi, Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates, ASME J. Heat Transfer, 120, 30, 10.1115/1.2830059
Liu, Thermal Conductivity of Ultra Thin Single Crystal Silicon Layers, Part 1—Experimental Measurements at Room and Cryogenic Temperatures, Proc. ASME International Mechanical Engineering Congress and Exposition, 10.1115/IMECE2004-62105
Majumdar, Effect of Gate Voltage on Hot-Electron and Hot-Phonon Interaction and Transport in a Submicrometer Transistor, J. Appl. Phys., 77, 6686, 10.1063/1.359082
Fushinobu, Heat Generation and Transport in Submicron Semiconductor Devices, ASME J. Heat Transfer, 117, 25, 10.1115/1.2822317
Lai, Concurrent Thermal and Electrical Modeling of Sub-Micrometer Silicon Devices, J. Appl. Phys., 79, 7353, 10.1063/1.361424
Narumanchi, Simulation of Unsteady Small Heat Source Effects in Sub-Micron Heat Conduction, ASME J. Heat Transfer, 125, 896, 10.1115/1.1603774
Narumanchi, Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization, ASME J. Heat Transfer, 126, 946, 10.1115/1.1833367
Amon, Modeling of Nanoscale Transport Phenomena: Application to Information Technology, Physica A, 362, 36, 10.1016/j.physa.2005.09.014
Escobar, Lattice Boltzmann Modeling of Subcontinuum Energy Transport in Crystalline and Amorphous Microelectronic Devices, ASME J. Electron. Packag., 128, 115, 10.1115/1.2188951
Escobar, Multi-Length and Time Scale Thermal Transport Using the Lattice Boltzmann Method With Applications to Electronics Cooling, Int. J. Heat Mass Transfer, 49, 97, 10.1016/j.ijheatmasstransfer.2005.08.003
Ghai, A Novel Heat Transfer Model and Its Application to Information Storage Systems, J. Appl. Phys., 97, 10P703, 10.1063/1.1853896
Narumanchi, Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors, ASME J. Heat Transfer, 127, 713, 10.1115/1.1924571
Narumanchi, Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics, Heat Mass Transfer, 42, 478, 10.1007/s00231-005-0645-6
Klitsner, Phonon Radiative Heat Transfer and Surface Scattering, Phys. Rev. B, 38, 7576, 10.1103/PhysRevB.38.7576
Peterson, Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal, ASME J. Heat Transfer, 116, 815, 10.1115/1.2911452
Mazumder, Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization, ASME J. Heat Transfer, 123, 749, 10.1115/1.1377018
Chen, Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity, ASME J. Heat Transfer, 127, 1129, 10.1115/1.2035114
Li, Atomistic Modeling of Finite-Temperature Properties of Crystalline β-SiC. II. Thermal Conductivity and Effects of Point Defects, J. Nucl. Mater., 255, 139, 10.1016/S0022-3115(98)00034-8
Lukes, Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity, ASME J. Heat Transfer, 122, 536, 10.1115/1.1288405
Volz, Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals, Phys. Rev. B, 61, 2651, 10.1103/PhysRevB.61.2651
Schelling, Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity, Phys. Rev. B, 65, 144306, 10.1103/PhysRevB.65.144306
Gomes, Thin Film In-Plane Thermal Conductivity Dependence on Molecular Dynamics Surface Boundary Conditions, Proc. ASME International Mechanical Engineering Congress and Exposition, 10.1115/IMECE2004-62264
McGaughey, Thermal Conductivity Decomposition and Analysis Using Molecular Dynamics Simulations. Part II. Complex Silica Structures, Int. J. Heat Mass Transfer, 47, 1799, 10.1016/j.ijheatmasstransfer.2003.11.009
Che, Thermal Conductivity of Diamond and Related Materials From Molecular Dynamics Simulations, J. Chem. Phys., 113, 6888, 10.1063/1.1310223
Volz, Lattice Dynamic Simulation of Silicon Thermal Conductivity, Physica B, 263–264, 709
Gomes, Parallel Molecular Dynamics Code Validation Through Bulk Silicon Thermal Conductivity Calculations, Proc. ASME International Mechanical Engineering Congress and Exposition, 10.1115/IMECE2003-42352
Lee, Molecular-Dynamics Simulation of Thermal Conductivity in Amorphous Silicon, Phys. Rev. B, 43, 6573, 10.1103/PhysRevB.43.6573
Ding, Molecular-Dynamics Simulation of Amorphous Germanium, Phys. Rev. B, 34, 6987, 10.1103/PhysRevB.34.6987
Feng, Molecular Dynamics Simulation of Thermal Conductivity of Nanoscale Thin Silicon Films, Microscale Thermophys. Eng., 7, 153, 10.1080/10893950390203332
Weakliem, Constant Temperature Molecular Dynamics Simulations of Si(100) and Ge(100): Equilibrium Structure and Short-Time Behavior, J. Chem. Phys., 96, 3240, 10.1063/1.461968
Yu, Molecular Dynamics Simulation of the Surface Reconstruction and Strain Relief in Si1−xGex∕Si(100) Heterostructures, Modell. Simul. Mater. Sci. Eng., 2, 829, 10.1088/0965-0393/2/4/003
Chantrenne, Finite Size Effects in Determination of Thermal Conductivities: Comparing Molecular Dynamics Results With Simple Models, ASME J. Heat Transfer, 126, 577, 10.1115/1.1777582
Stillinger, Computer Simulation of Local Order in Condensed Phases of Silicon, Phys. Rev. B, 31, 5262, 10.1103/PhysRevB.31.5262
Broughton, Phase Diagram of Silicon by Molecular Dynamics, Phys. Rev. B, 35, 9120, 10.1103/PhysRevB.35.9120
Cook, Comparison of Semi-Empirical Potential Functions for Silicon and Germanium, Phys. Rev. B, 47, 7686, 10.1103/PhysRevB.47.7686
Karimi, Elastic Constants of Silicon Using Monte Carlo Simulations, Phys. Rev. B, 58, 6019, 10.1103/PhysRevB.58.6019
Kallman, Molecular Dynamics of Silicon Indentation, Phys. Rev. B, 47, 7705, 10.1103/PhysRevB.47.7705
Allen, Computer Simulation of Liquids, 61
Frenkel, Understanding Molecular Simulation: From Algorithms to Applications, 90
McQuarrie, Statistical Mechanics, 521
Reif, Fundamentals of Statistical and Thermal Physics, 480
Flubacher, Heat Capacity of Pure Silicon and Germanium and Properties of Their Vibrational Frequency Spectra, Philos. Mag., 4, 273, 10.1080/14786435908233340
Desai, Thermodynamic Properties of Iron and Silicon, J. Phys. Chem. Ref. Data, 15, 967, 10.1063/1.555761
Porter, The Importance of Gruneisen Parameters in Developing Interatomic Potentials, J. Appl. Phys., 82, 5378, 10.1063/1.366305
Ashcroft, Solid State Physics, 461
Aono, Low-Energy Ion Scattering From the Si(001) Surface, Phys. Rev. Lett., 49, 567, 10.1103/PhysRevLett.49.567