In-Out Surface Modification of Halloysite Nanotubes (HNTs) for Excellent Cure of Epoxy: Chemistry and Kinetics Modeling
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jouyandeh, 2020, Synthesis, characterization, and high potential of 3D metal–organic framework (MOF) nanoparticles for curing with epoxy, J. Alloys Compd., 829, 154547, 10.1016/j.jallcom.2020.154547
Karami, 2019, Cure Index for labeling curing potential of epoxy/LDH nanocomposites: A case study on nitrate anion intercalated Ni-Al-LDH, Prog. Org. Coat., 136, 105228, 10.1016/j.porgcoat.2019.105228
Seidi, F., Jouyandeh, M., Taghizadeh, M., Taghizadeh, A., Vahabi, H., Habibzadeh, S., Formela, K., and Saeb, M.R. (2020). Metal-Organic Framework (MOF)/Epoxy Coatings: A Review. Materials, 13.
Jouyandeh, 2020, Nonisothermal cure kinetics of epoxy/MnxFe3-xO4 nanocomposites, Prog. Org. Coat., 140, 105505, 10.1016/j.porgcoat.2019.105505
Jouyandeh, 2019, Cure kinetics of epoxy/graphene oxide (GO) nanocomposites: Effect of starch functionalization of GO nanosheets, Prog. Org. Coat., 136, 105217, 10.1016/j.porgcoat.2019.105217
Jouyandeh, 2019, Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized ZnxFe3-xO4 magnetic nanoparticles, Prog. Org. Coat., 136, 105227, 10.1016/j.porgcoat.2019.105227
Bayat, 2019, Thin films of epoxy adhesives containing recycled polymers and graphene oxide nanoflakes for metal/polymer composite interface, Prog. Org. Coat., 136, 105201, 10.1016/j.porgcoat.2019.06.047
Jouyandeh, 2018, Epoxy coatings physically cured with hydroxyl-contained silica nanospheres and halloysite nanotubes, Prog. Color Colorants Coat., 11, 199
Jouyandeh, 2019, Curing epoxy with electrochemically synthesized NixFe3-xO4 magnetic nanoparticles, Prog. Org. Coat., 136, 105198, 10.1016/j.porgcoat.2019.06.044
Jouyandeh, 2019, Curing epoxy with electrochemically synthesized GdxFe3-xO4 magnetic nanoparticles, Prog. Org. Coat., 136, 105245, 10.1016/j.porgcoat.2019.105245
Jouyandeh, 2019, Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective, Prog. Org. Coat., 133, 220, 10.1016/j.porgcoat.2019.04.034
Farzad, 2021, Polyhedral oligomeric silsesquioxane/epoxy coatings: A review, Surf. Innov., 9, 3, 10.1680/jsuin.20.00037
Jouyandeh, 2019, Curing epoxy with polyethylene glycol (PEG) surface-functionalized NixFe3-xO4magnetic nanoparticles, Prog. Org. Coat., 136, 105250, 10.1016/j.porgcoat.2019.105250
Jouyandeh, 2019, Curing epoxy with electrochemically synthesized ZnxFe3-xO4 magnetic nanoparticles, Prog. Org. Coat., 136, 105246, 10.1016/j.porgcoat.2019.105246
Tikhani, F., Moghari, S., Jouyandeh, M., Laoutid, F., Vahabi, H., Saeb, M.R., and Dubois, P. (2020). Curing Kinetics and Thermal Stability of Epoxy Composites Containing Newly Obtained Nano-Scale Aluminum Hypophosphite (AlPO2). Polymers, 12.
Karami, 2019, Curing epoxy with Mg-Al LDH nanoplatelets intercalated with carbonate ion, Prog. Org. Coat., 136, 105278, 10.1016/j.porgcoat.2019.105278
Mostafaei, 2014, Epoxy/polyaniline–ZnO nanorods hybrid nanocomposite coatings: Synthesis, characterization and corrosion protection performance of conducting paints, Prog. Org. Coat., 77, 146, 10.1016/j.porgcoat.2013.08.015
Dehghanian, 2015, Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline–camphorsulfonate nanocomposite coating, Corros. Sci., 90, 239, 10.1016/j.corsci.2014.10.015
Mozafari, M., and Chauhan, N.P.S. (2019). Chapter 7—PANI-Based Nanostructures. Fundamentals and Emerging Applications of Polyaniline, Elsevier.
Jia, 2020, Preparation of pH responsive smart nanocontainer via inclusion of inhibitor in graphene/halloysite nanotubes and its application in intelligent anticorrosion protection, Appl. Surf. Sci., 504, 144496, 10.1016/j.apsusc.2019.144496
Zhou, 2020, Epoxy composite coating with excellent anticorrosion and self-healing performances based on multifunctional zeolitic imidazolate framework derived nanocontainers, Chem. Eng. J., 385, 123835, 10.1016/j.cej.2019.123835
Rahsepar, 2017, Synthesis and characterization of inhibitor-loaded silica nanospheres for active corrosion protection of carbon steel substrate, J. Alloys Compd., 709, 519, 10.1016/j.jallcom.2017.03.104
Zahidah, 2017, Halloysite nanotubes as nanocontainer for smart coating application: A review, Prog. Org. Coat., 111, 175, 10.1016/j.porgcoat.2017.05.018
Paran, 2019, Thermal decomposition kinetics of dynamically vulcanized polyamide 6–acrylonitrile butadiene rubber–halloysite nanotube nanocomposites, J. Appl. Polym. Sci., 136, 47483, 10.1002/app.47483
Akbari, V., Jouyandeh, M., Paran, S.M.R., Ganjali, M.R., Abdollahi, H., Vahabi, H., Ahmadi, Z., Formela, K., Esmaeili, A., and Mohaddespour, A. (2020). Effect of Surface Treatment of Halloysite Nanotubes (HNTs) on the Kinetics of Epoxy Resin Cure with Amines. Polymers, 12.
Vahedi, 2014, Instrumented impact properties and fracture behaviour of epoxy/modified halloysite nanocomposites, Polym. Test., 39, 101, 10.1016/j.polymertesting.2014.07.017
Ravichandran, 2019, Enhancement of mechanical properties of epoxy/halloysite nanotube (HNT) nanocomposites, SN Appl. Sci., 1, 296, 10.1007/s42452-019-0323-9
Lvov, 2019, Interfacial Self-Assembly in Halloysite Nanotube Composites, Langmuir, 35, 8646, 10.1021/acs.langmuir.8b04313
Ghodke, 2019, Functionalization, Uptake and Release Studies of Active Molecules Using Halloysite Nanocontainers, J. Inst. Eng. (India) Ser. E, 100, 59, 10.1007/s40034-019-00140-6
Lvov, 2008, Halloysite Clay Nanotubes for Controlled Release of Protective Agents, ACS Nano, 2, 814, 10.1021/nn800259q
Cavallaro, G., Danilushkina, A.A., Evtugyn, V.G., Lazzara, G., Milioto, S., Parisi, F., Rozhina, E.V., and Fakhrullin, R.F. (2017). Halloysite Nanotubes: Controlled Access and Release by Smart Gates. Nanomaterials, 7.
Abdullayev, 2010, Clay nanotubes for corrosion inhibitor encapsulation: Release control with end stoppers, J. Mater. Chem., 20, 6681, 10.1039/c0jm00810a
Suner, 2019, Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering, Int. J. Biol. Macromol., 130, 627, 10.1016/j.ijbiomac.2019.03.025
Lisuzzo, L., Cavallaro, G., Parisi, F., Milioto, S., Fakhrullin, R., and Lazzara, G. (2019). Core/Shell Gel Beads with Embedded Halloysite Nanotubes for Controlled Drug Release. Coatings, 9.
Zahidah, 2017, Benzimidazole-loaded halloysite nanotube as a smart coating application, Int. J. Eng. Technol. Innov., 7, 243
Vijayan, 2016, Halloysite Nanotube as Multifunctional Component in Epoxy Protective Coating, Ind. Eng. Chem. Res., 55, 11186, 10.1021/acs.iecr.6b02736
Hoseinzadeh, 2020, Formulation of a smart nanocomposite coating with pH-responsive loaded halloysite and investigation of its anticorrosion behaviour, Bull. Mater. Sci., 43, 230, 10.1007/s12034-020-02130-6
Luo, 2013, Liquid Crystalline Phase Behavior and Sol–Gel Transition in Aqueous Halloysite Nanotube Dispersions, Langmuir, 29, 12358, 10.1021/la402836d
Akbari, 2019, Surface chemistry of halloysite nanotubes controls the curability of low filled epoxy nanocomposites, Prog. Org. Coat., 135, 555, 10.1016/j.porgcoat.2019.06.009
Jouyandeh, 2019, Bushy-surface hybrid nanoparticles for developing epoxy superadhesives, Appl. Surf. Sci., 479, 1148, 10.1016/j.apsusc.2019.01.283
He, 2015, pH-Responsive nanovalves based on encapsulated halloysite for the controlled release of a corrosion inhibitor in epoxy coating, RSC Adv., 5, 90609, 10.1039/C5RA19296J
Ye, 2020, POSS-tetraaniline modified graphene for active corrosion protection of epoxy-based organic coating, Chem. Eng. J., 383, 123160, 10.1016/j.cej.2019.123160
Wei, 2008, Aniline oligomers—Architecture, function and new opportunities for nanostructured materials, Macromol. Rapid Commun., 29, 280, 10.1002/marc.200700741
Cao, 1986, Spectroscopic and electrical characterization of some aniline oligomers and polyaniline, Synth. Met., 16, 305, 10.1016/0379-6779(86)90167-0
Taka, 2018, Preparation of Aniline Dimer-COOH Modified Magnetite (Fe3O4) Nanoparticles by Ultrasonic Dispersion Method, Int. J. Eng. Technol., 7, 185, 10.14419/ijet.v7i4.30.22108
Tang, 1988, Infrared Spectra of Soluble Polyaniline, Synth. Met., 24, 231, 10.1016/0379-6779(88)90261-5
2004, Synthesis and spectroscopic properties of aniline tetramers. Comparative studies, New J. Chem., 28, 669, 10.1039/B311096F
Jouyandeh, M., Ganjali, M.R., Seidi, F., Xiao, H., and Saeb, M.R. (2020). Nonisothermal Cure Kinetics of Epoxy/Polyvinylpyrrolidone Functionalized Superparamagnetic Nano-Fe3O4 Composites: Effect of Zn and Mn Doping. J. Compos. Sci., 4.
Rossier, J.N.S., Pavic, A., Vojnovic, S., Stringer, T., Bättig, S., Smith, G.S., Nikodinovic-Runic, J., and Zobi, F. (2019). Antiplasmodial Activity and In Vivo Bio-Distribution of Chloroquine Molecules Released with a 4-(4-Ethynylphenyl)-Triazole Moiety from Organometallo-Cobalamins. Molecules, 24.
Jouyandeh, 2020, Highly curable self-healing vitrimer-like cellulose-modified halloysite nanotube/epoxy nanocomposite coatings, Chem. Eng. J., 396, 125196, 10.1016/j.cej.2020.125196
Zhang, 2020, Fabrication and characterization of surface modified HMX@ PANI core-shell composites with enhanced thermal properties and desensitization via in situ polymerization, Appl. Surf. Sci., 515, 146042, 10.1016/j.apsusc.2020.146042
Jana, 2015, Halloysite nanotubes capturing isotope selective atmospheric CO2, Sci. Rep., 5, 8711, 10.1038/srep08711
Filip, 2009, Some aspects of 8-hydroxyquinoline in solvents, Acta Chem. Iasi, 17, 85
Peng, 2017, Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties, Sci. Rep., 7, 2250, 10.1038/s41598-017-02501-w
Jouyandeh, 2019, Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized MnxFe3-xO4 magnetic nanoparticles, Prog. Org. Coat., 136, 105247, 10.1016/j.porgcoat.2019.105247
Seidi, 2020, Super-crosslinked ionic liquid-intercalated montmorillonite/epoxy nanocomposites: Cure kinetics, viscoelastic behavior and thermal degradation mechanism, Polym. Eng. Sci., 60, 1940, 10.1002/pen.25441
Boonlert-Uthai, T., Samthong, C., and Somwangthanaroj, A. (2019). Synthesis, Thermal Properties and Curing Kinetics of Hyperbranched BPA/PEG Epoxy Resin. Polymers, 11.
Tikhani, 2019, Cure Index demonstrates curing of epoxy composites containing silica nanoparticles of variable morphology and porosity, Prog. Org. Coat., 135, 176, 10.1016/j.porgcoat.2019.05.017
Jeyranpourkhameneh, 2016, The Thermo-Mechanical Properties estimation of Fullerene-Reinforced Resin Epoxy Composites by Molecular Dynamics Simulation- A Comparative Study, Polymer, 88, 9, 10.1016/j.polymer.2016.02.018
Jouyandeh, 2019, Curing epoxy with electrochemically synthesized MnxFe3-xO4 magnetic nanoparticles, Prog. Org. Coat., 136, 105199, 10.1016/j.porgcoat.2019.06.045
Jouyandeh, 2019, Curing epoxy with polyethylene glycol (PEG) surface-functionalized GdxFe3-xO4 magnetic nanoparticles, Prog. Org. Coat., 137, 105283, 10.1016/j.porgcoat.2019.105283
Karami, Z., Paran, S.M.R., Vijayan, P., Ganjali, M.R., Jouyandeh, M., Esmaeili, A., Habibzadeh, S., Stadler, F.J., and Saeb, M.R. (2020). A Comparative Study on Cure Kinetics of Layered Double Hydroxide (LDH)/Epoxy Nanocomposites. J. Compos. Sci., 4.
Jouyandeh, 2019, Nonisothermal cure kinetics of epoxy/ZnxFe3-xO4 nanocomposites, Prog. Org. Coat., 136, 105290, 10.1016/j.porgcoat.2019.105290
Jouyandeh, 2018, Acid-aided epoxy-amine curing reaction as reflected in epoxy/Fe3O4 nanocomposites: Chemistry, mechanism, and fracture behavior, Prog. Org. Coat., 125, 384, 10.1016/j.porgcoat.2018.09.024
Nabil, 2012, Effects of partial replacement of commercial fillers by recycled poly(ethylene terephthalate) powder on the properties of natural rubber composites, J. Vinyl Addit. Technol., 18, 139, 10.1002/vnl.20291
Guo, 2010, Molecular Architecture of Electroactive and Biodegradable Copolymers Composed of Polylactide and Carboxyl-Capped Aniline Trimer, Biomacromolecules, 11, 855, 10.1021/bm9011248
Hu, 2008, A new oxidation state of aniline pentamer observed in water-soluble electroactive oligoaniline-chitosan polymer, J. Polym. Sci. Part A Polym. Chem., 46, 1124, 10.1002/pola.22454