Improving variational mass-consistent models of hydrodynamic flows via boundary conditions

The European Physical Journal Plus - Tập 127 - Trang 1-17 - 2012
M. A. Núñez1
1Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, D. F., Mexico

Tóm tắt

Variational mass-consistent models for the velocity field v have been used by mesoscale meteorological community to modeling the wind field from an observed field v 0 in a bounded region Ω with boundary Γ. Variational calculus reduces the problem to the solution of an elliptic equation for a Lagrange multiplier λ subject to Dirichlet Boundary Condition (DBC) on flow-through boundaries. In this work, it is shown that DBC decreases the regularity of λ and this in turn decreases the accuracy with which the velocity field satisfies the mass-balance. The boundary condition (BC) v · n = v T · ngiven by the true field v T on the whole boundary Γ, leads only to a Neumann boundary condition (NBC) for λ. Approximations of this BC are studied. Analytic and numerical results show that the velocity field U 0 obtained from v 0 by direct integration of the continuity equation, yields a NBC that improves significantly the fields obtained with DBC’s.

Tài liệu tham khảo

R. Daley, Atmospheric Data Analysis (Cambridge University Press, New York, 1991). R.A. Pielke, Mesoscale Meteorological Modeling (Academic Press, New York, 2002). C. Wunsch, The Ocean Circulation Inverse Problem (Cambridge University Press, New York, 1996). Markus Raffel, C.E. Willert, J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, Berlin, 1998). P. Zannetti, Air Pollution Modeling: Theories, Computational Methods and Available Software (van Nostrand Reinhold, New York, 1990). C.F. Ratto, R. Festa, C. Romeo, O.A. Frumento, M. Galluzzi, Environ. Software92471994. C.F. Ratto, An overview of mass-consistent models, in Modeling of Atmospheric Flows, edited by D.P. Lalas, C.F. Ratto (World Scientific Publishing, Singapore, 1996) pp. 379--400. G.F. Homicz, Three-Dimensional Wind Field Modeling: A Review, Sandia National Laboratories, report SAN2002-2597 (2002). R. Martens, H. Thielen, T. Sperling, K. Masmeyer, Int. J. Environ. Pollut. 14, 573 (2000). X. Guo, J.P. Palutikof, Boundary-Layer Meteorol. 53, 303 (1990). G. Gross, Boundary-Layer Meteorol. 77, 379 (1996). Y. Sasaki, Mon. Weather. Rev. 98, 875 (1970). M.H. Dickerson, J. Appl. Meteorol. 17, 241 (1978). C.A. Sherman, J. Appl. Meteorol. 17, 312 (1978). T. Kitada, A. Kaki, H. Ueda, L.K. Peters, Atmos. Environ. 17, 2181 (1983). C.G. Davis, S.S. Bunker, J.P. Mutschlecner, J. Climate Appl. Meteorol. 23, 235 (1984). T. Kitada, K. Igarashi, M. Owada, J. Climate Appl. Meteorol. 25, 767 (1986). N. Moussiopoulos, Th. Flassak, J. Appl. Meteorol. 25, 847 (1986). N. Moussiopoulos The diagnostic wind model CONDOR, in Modeling of Atmospheric Flows, edited by D.P. Lalas, C.F. Ratto (World Scientific Publishing, Singapore, 1996) pp. 379--400. J.C. Barnard, H.L. Wegley, T.R. Hiester, J. Climate Appl. Meteorol. 26, 675 (1987). D.G. Ross, I.N. Smith, P.C. Manins, D.G. Fox, J. Appl. Meteorol. 27, 785 (1988). H. Ishikawa, J. Appl. Meteorol. 33, 733 (1994). Y. Heta, J. Meteorol. Soc. Jpn 70, 783 (1992). M. Harada, S. Hayashi, K. Wakimizu, J. Fac. Agric. Kyushu Univ. 44, 403 (2000). E. Rodríguez, G. Montero, R. Montenegro, J.M. Escobar, J.M. Gonzalez-Yuste, Lect. Notes Comput. Sci. 2339, 950 (2002). Y. Wang, C. Williamson, D. Garvey, S. Chang, J. Cogan, J. Appl. Meteorol. 44, 1078 (2005). M.A. Núñez, C. Flores, H. Juárez, J. Comput. Meteorol. Sci. Eng. 7, 21 (2007). N. Sanín, G. Montero, Adv. Eng. Software 38, 358 (2007). D. Carstoiu, V.E. Oltean, G. Gorghiu, A. Olteanu, A. Cernian, ``Approaches in wind modeling and air quality monitoring systems’’, Bulletin UASVM, Horticulture 65(2)/2008, pISSN 1843-5254, eISSN 1843-5394 (2008). C. Flores, H. Juárez, M.A. Núñez, M.L. Sandoval, Numer. Methods Partial Differ. Equ. 26, 826 (2010). F. Desiato, S. Finardi, G. Brusasca, M.G. Morselli, Atmos. Environ. 32, 1141 (1998). D.W. Byun, J. Atmos. Sci. 56, 3808 (1999). N.L. Seaman, Atmos. Environ. 34, 2231 (2000). S. Finardi, G. Tinarelli, A. Nanni, G. Brusasca, G. Carboni, Int. J. Environ. Pollution 16, 472 (2001). F. Castino, L. Rusca, G. Solari, J. Wind Eng. Ind. Aerodynam. 91, 1353 (2003). M.A. Núñez, G. Ramírez, G. H. Hernández, Análisis de métodos de interpolación de datos de viento basados en la ecuación de conservación de la masa, Reporte de investigación, Universidad Autónoma Metropolitana, División de Ciencias Básicas e Ingeniería, 1--65 (2004). M.A. Núñez, C. Flores, H. Juárez, J. Comput. Meteorol. Sci. Eng. 6, 365 (2006). M.A. Núñez, New scheme to compute mass-consistent models of geophysical flows, in Proceedings of the I Workshop on Asymptotics for Parabolic and Hyperbolic Systems (Laboratóiro Nacional de Computação Científica, Petrópolis-R. J., 2008). K. Rektorys, Variational Methods in Mathematics, Science and Engineering (D. Reidel, Dordrecht, 1977). H. Hochstadt, Differential Equations: A Modern Approach (Dover, New York, 1964) Chapt. 6. R.L. Burden, J.D. Faires, Numerical Analysis (PWS-KENT, Boston, 1985). M.A. Núñez, J.E. Sánchez-Sánchez, Eur. Phys. J. Plus 127, 39 (2012). A. Zigmund Trigonometric Series, 2nd edition (Cambridge University Press, Cambridge, 2002). T. Kato, Perturbation Theory for Linear Operators (Springer, New York, 1965). V. Girault, P.-A. Raviart, Finite Element Methods for Navier-Stokes Equation, Theory and Algorithms (Springer, Berlin, 1986). A proof of relation \(\mathbb{V}^ \bot = \left\{ {\nabla q:q \in H_D^1 \left( \Omega \right)} \right\}\) is given in ref. 27, pp. 25, 26. J.D. Murray, Asymptotic Analysis (Springer, New York, 1984) p. 35, eqs. (2.38), (2.39).