Cải thiện hiệu suất của phân tán polyurethane sinh học bằng việc bổ sung coumarin có khả năng liên kết qua ánh sáng

Lorena Germán-Ayuso1, José María Cuevas1, Rubén Seoane-Rivero1, Rodrigo Navarro2, Ángel Marcos‐Fernández2, José Luis Vilas-Vilela3,4
1GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
2Instituto de Ciencia y Tecnología de Polímeros, CSIC, Madrid, Spain
3BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
4Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain

Tóm tắt

Tóm tắtPhân tán polyurethane chứa carbon sinh học cao (PUD) là một lựa chọn bền vững hơn cho các loại phân tán gốc dầu truyền thống trong sơn. Tuy nhiên, vẫn còn nhiều hạn chế về hiệu suất do sự sẵn có hạn chế của các monomer và oligomer tái tạo hiệu quả. Công trình này chứng minh sự cải thiện các thuộc tính của PUD chứa carbon sinh học cao và lớp phủ thu được bằng cách giới thiệu coumarin có khả năng liên kết qua ánh sáng như một yếu tố kéo dài chuỗi trong cấu trúc. Tác động của việc thay thế một phần 1,3-propanediol sinh học bằng một coumarin vòng hai hydroxy phản ứng với ánh sáng lên kích thước hạt và độ ổn định đã được phân tích bằng phương pháp rải sáng động (DLS) và rải sáng đa chiều (MLS). Cấu trúc bên và vững chắc hơn của coumarin liên quan đến việc tăng nhẹ kích thước hạt mà không có tác động đáng kể lên độ ổn định phân tán ít nhất trong 45 ngày. Cải thiện liên quan về độ cứng và độ bền cũng được chứng minh bằng các thử nghiệm kéo, độ cứng con lắc, độ cứng bút chì và thử nghiệm kháng xước. Hơn nữa, việc chiếu xạ UV có kiểm soát lên polyurethane đã tạo ra một điều chỉnh hiệu suất cơ học từ liên kết chéo phản hồi qua ánh sáng và sự cắt đứt của các phân tử coumarin trong cấu trúc đại phân tử. Độ dimer hóa 70% của coumarin trong lớp film polyurethane dưới ánh sáng UV đã cung cấp một sức kéo hoàn toàn có khôi phục gấp ba lần so với công thức sinh học ban đầu như một công cụ hiệu quả để điều chỉnh phản ứng của polyurethan sinh học. Tóm tắt Hình ảnh

Từ khóa


Tài liệu tham khảo

Engels, HW, et al. “Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges.” Angew. Chem. Int. Ed., 52 (36) 9422–9441. https://doi.org/10.1002/anie.201302766 (2013)

Jung, DH, Kim, EY, Kang, YS, Kim, BK, “High Solid and High Performance UV Cured Waterborne Polyurethanes.” Colloids Surfaces A Physicochem. Eng. Asp., 370 (1–3) 58–63. https://doi.org/10.1016/j.colsurfa.2010.08.046 (2010)

Yu, F, Xu, X, Lin, N, Liu, XY, “Structural Engineering of Waterborne Polyurethane for High Performance Waterproof Coatings.” RSC Adv., 5 (89) 72544–72552. https://doi.org/10.1039/c5ra12480h (2015)

Santamaria-Echart, A, Fernandes, I, Barreiro, F, Corcuera, MA, Eceiza, A, “Advances in Waterborne Polyurethane and Polyurethane-urea Dispersions and Their Eco-Friendly Derivatives: A Review.” Polymers (Basel), 13 (3) 1–32. https://doi.org/10.3390/polym13030409 (2021)

Poussard, L, Lazko, J, Mariage, J, Raquez, JM, Dubois, P, “Biobased Waterborne Polyurethanes for Coating Applications: How Fully Biobased Polyols May Improve the Coating Properties.” Prog. Org. Coat., 97 175–183. https://doi.org/10.1016/j.porgcoat.2016.04.003 (2016)

Zhang, C, Madbouly, SA, Kessler, MR, “Biobased Polyurethanes Prepared from Different Vegetable Oils.” ACS Appl. Mater. Interfaces, 7 (2) 1226–1233. https://doi.org/10.1021/am5071333 (2015)

Gurunathan, T, Arukula, R, “High Performance Polyurethane Dispersion Synthesized from Plant Oil Renewable Resources: A Challenge in the Green Materials.” Polym. Degrad. Stab., 150 (2017) 122–132. https://doi.org/10.1016/j.polymdegradstab.2018.02.014 (2018)

Zhang, Y, et al. “Waterborne Polyurethanes from Castor Oil-based Polyols for Next Generation of Environmentally-Friendly Hair-Styling Agents.” Prog. Org. Coat., 142 105588. https://doi.org/10.1016/j.porgcoat.2020.105588 (2020)

Bao, LH, Lan, YJ, Zhang, SF, “Synthesis and Properties of Waterborne Polyurethane Dispersions with Ions in the Soft Segments.” J. Polym. Res., 13 (6) 507–514. https://doi.org/10.1007/s10965-006-9073-7 (2006)

Athawale, VD, Nimbalkar, RV, “Polyurethane Dispersions Based on Sardine Fish Oil, Soybean Oil, and Their Interesterification Products.” J. Dispers. Sci. Technol., 32 (7) 1014–1022. https://doi.org/10.1080/01932691.2010.497459 (2011)

Saalah, S, et al. “Waterborne Polyurethane Dispersions Synthesized from Jatropha Oil.” Ind. Crops Prod., 64 194–200. https://doi.org/10.1016/j.indcrop.2014.10.046 (2015)

Gaddam, SK, Palanisamy, A, “Effect of Counterion on the Properties of Anionic Waterborne Polyurethane Dispersions Developed from Cottonseed Oil Based Polyol.” J. Polym. Res., 25 186. https://doi.org/10.1007/s10965-018-1580-9 (2018)

Liang, H, et al. “Tailoring the Performance of Vegetable Oil-Based Waterborne Polyurethanes Through Incorporation of Rigid Cyclic Rings into Soft Polymer Networks.” ACS Sustain. Chem. Eng., 8 (2) 914–925. https://doi.org/10.1021/acssuschemeng.9b05477 (2020)

Cuevas, JM, Seoane-Rivero, R, Navarro, R, Marcos-Fernández, Á, “Coumarins into Polyurethanes for Smart and Functional Materials.” Polymers (Basel), 12 (3) 630. https://doi.org/10.3390/polym12030630 (2020)

Cazin, I, Rossegger, E, Guedes de la Cruz, G, Griesser, T, Schlögl, S, “Recent Advances in Functional Polymers Containing Coumarin Chromophores.” Polymers (Basel), 13 (1) 1–51. https://doi.org/10.3390/polym13010056 (2021)

Ling, J, Rong, MZ, Zhang, MQ, “Photo-Stimulated Self-healing Polyurethane Containing Dihydroxyl Coumarin Derivatives.” Polymer (Guildf), 53 (13) 2691–2698. https://doi.org/10.1016/j.polymer.2012.04.016 (2012)

Aguirresarobe, RH, Martin, L, Aramburu, N, Irusta, L, Fernandez-Berridi, MJ, “Coumarin Based Light Responsive Healable Waterborne Polyurethanes.” Prog. Org. Coat., 99 314–321. https://doi.org/10.1016/j.porgcoat.2016.06.011 (2016)

Seoane Rivero, R, Bilbao Solaguren, P, Gondra Zubieta, K, Gonzalez-Jimenez, A, Valentin, JL, Marcos-Fernandez, A, “Synthesis and Characterization of a Photo-Crosslinkable Polyurethane Based on a Coumarin-Containing Polycaprolactone Diol.” Eur. Polym. J., 76 245–255. https://doi.org/10.1016/j.eurpolymj.2016.01.047 (2016)

Seoane Rivero, R, Navarro, R, Bilbao Solaguren, P, Gondra Zubieta, K, Cuevas, JM, Marcos-Fernández, A, “Synthesis and Characterization of Photo-Crosslinkable Linear Segmented Polyurethanes Based on Coumarin.” Eur. Polym. J., 92 263–274. https://doi.org/10.1016/j.eurpolymj.2017.05.016 (2017)

Seoane Rivero, R, Bilbao Solaguren, P, Gondra Zubieta, K, Peponi, L, Marcos-Fernández, A, “Synthesis, Kinetics of Photo-dimerization/Photo-cleavage and Physical Properties of Coumarin-Containing Branched Polyurethanes Based on Polycaprolactones.” Express Polym. Lett., 10 (2) 84–95. https://doi.org/10.3144/expresspolymlett.2016.10 (2016)

Yim, SH, Huh, J, Ahn, CH, Park, TG, “Development of a Novel Synthetic Method for Aliphatic Ester Dendrimers.” Macromolecules, 40 (2) 205–210. https://doi.org/10.1021/ma061859p (2007)

Malkoch, M, Malmström, E, Hult, A, “Rapid and Efficient Synthesis of Aliphatic Ester Dendrons and Dendrimers.” Macromolecules, 35 (22) 8307–8314. https://doi.org/10.1021/ma0205360 (2002)

Germán, L, Cuevas, JM, Cobos, R, Pérez-Alvarez, L, Vilas-Vilela, JL, “Green Alternative Cosolvents to N-Methyl-2-Pyrrolidone in Water Polyurethane Dispersions.” RSC Adv., 11 (31) 19070–19075. https://doi.org/10.1039/d1ra03157k (2021)

Ling, J, Rong, MZ, Zhang, MQ, “Coumarin Imparts Repeated Photochemical Remendability to Polyurethane.” J. Mater. Chem., 21 (45) 18373–18380. https://doi.org/10.1039/c1jm13467a (2011)

Fu, Q, Cheng, L, Zhang, Y, Shi, W, “Preparation and Reversible Photo-Crosslinking/Photo-Cleavage Behavior of 4-Methylcoumarin Functionalized Hyperbranched Polyester.” Polymer (Guildf), 49 (23) 4981–4988. https://doi.org/10.1016/j.polymer.2008.09.017 (2008)

Puyadena, M, et al. “Polyurethane/acrylic Hybrid Dispersions Containing Phosphorus Reactive Flame Retardants as Transparent Coatings for Wood.” Prog. Org. Coat., 170 107005. https://doi.org/10.1016/j.porgcoat.2022.107005 (2022)

Seoane-Rivero, R, et al. “Structural Characterization of Mono and Dihydroxylated Umbelliferone Derivatives.” Molecules, 25 (15) 1–20. https://doi.org/10.3390/molecules25153497 (2020)

Wen, J, Sun, Z, Xiang, J, Fan, H, Chen, Y, Yan, J, “Preparation and Characteristics of Waterborne Polyurethane with Various Lengths of Fluorinated Side Chains.” Appl. Surf. Sci., 494 (July) 610–618. https://doi.org/10.1016/j.apsusc.2019.07.170 (2019)

Aguirresarobe, RH, Irusta, L, Fernández-Berridi, MJ, “UV-light Responsive Waterborne Polyurethane Based on Coumarin: Synthesis and Kinetics of Reversible Chain Extension.” J. Polym. Res., 21 505. https://doi.org/10.1007/s10965-014-0505-5 (2014)

Lowry, GV, et al. “Guidance to Improve the Scientific Value of Zeta-potential Measurements in nanoEHS.” Environ. Sci. Nano, 3 (5) 953–965. https://doi.org/10.1039/c6en00136j (2016)

Tennebroek, R, et al. “Water-based Polyurethane Dispersions.” Polym. Int., 68 (5) 832–842. https://doi.org/10.1002/pi.5627 (2019)

Jaudouin, O, Robin, JJ, Lopez-Cuesta, JM, Perrin, D, Imbert, C, “Ionomer-Based Polyurethanes: A Comparative Study of Properties and Applications.” Polym. Int., 61 (4) 495–510. https://doi.org/10.1002/pi.4156 (2012)

Navarro, R, Seoane-Rivero, R, Cuevas, JM, Marcos-Fernandez, Á, “A Novel Strategy to Polyurethanes with Improved Mechanical Properties by Photoactivation of Amidocoumarin Moieties.” RSC Adv., 10 (50) 29935–29944. https://doi.org/10.1039/d0ra06372j (2020)

Yang, Z, Cui, X, “Effect of Chain Extenders with Different Functionalities on the Properties of Single-Component Waterborne Polyurethane Ink Binders.” RSC Adv., 12 (26) 16696–16705. https://doi.org/10.1039/d2ra02707k (2022)

Son, TW, Won, D, “Thermal and Phase Behavior of Polyurethane Based on Chain Extender, 2,2-Bis-[4-(2-hydroxyethoxy)phenyl]propane.” Polym. J., 31 (7) 563–568. https://doi.org/10.1295/polymj.31.563 (1999)

Asensio, M, Costa, V, Nohales, A, Bianchi, O, Gómez, CM, “Tunable Structure and Properties of Segmented Thermoplastic Polyurethanes as a Function of Flexible Segment.” Polymers (Basel), 11 (12) 1910. https://doi.org/10.3390/polym11121910 (2019)

Ling, J, Rong, MZ, Zhang, MQ, “Effect of Molecular Weight of PEG Soft Segments on Photo-stimulated Self-healing Performance of Coumarin Functionalized Polyurethanes.” Chin. J. Polym. Sci., 32 (10) 1286–1297. https://doi.org/10.1007/s10118-014-1522-x (2014)

Yong, Q, Liao, B, Huang, J, Guo, Y, Liang, C, Pang, H, “Preparation and Characterization of a Novel Low Gloss Waterborne Polyurethane Resin.” Surf. Coat. Technol., 341 (2017) 78–85. https://doi.org/10.1016/j.surfcoat.2018.01.012 (2018)