Improving the local climate zone classification with building height, imperviousness, and machine learning for urban models
Tóm tắt
The Local Climate Zone (LCZ) classification is already widely used in urban heat island and other climate studies. The current classification method does not incorporate crucial urban auxiliary GIS data on building height and imperviousness that could significantly improve urban-type LCZ classification utility as well as accuracy. This study utilized a hybrid GIS- and remote sensing imagery-based framework to systematically compare and evaluate different machine and deep learning methods. The Convolution Neural Network (CNN) classifier outperforms in terms of accuracy, but it requires multi-pixel input, which reduces the output’s spatial resolution and creates a tradeoff between accuracy and spatial resolution. The Random Forest (RF) classifier performs best among the single-pixel classifiers. This study also shows that incorporating building height dataset improves the accuracy of the high- and mid-rise classes in the RF classifiers, whereas an imperviousness dataset improves the low-rise classes. The single-pass forward permutation test reveals that both auxiliary datasets dominate the classification accuracy in the RF classifier, while near-infrared and thermal infrared are the dominating features in the CNN classifier. These findings show that the conventional LCZ classification framework used in the World Urban Database and Access Portal Tools (WUDAPT) can be improved by adopting building height and imperviousness information. This framework can be easily applied to different cities to generate LCZ maps for urban models.
Tài liệu tham khảo
Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1–26. https://doi.org/10.1002/joc.859
Bechtel, B., Alexander, P. J., Böhner, J., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L., & Stewart, I. (2015). Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS International Journal of Geo-Information, 4(1), 199–219. https://doi.org/10.3390/ijgi4010199
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brown de Colstoun, E. C., Huang, C., Wang, P., Tilton, J. C., Tan, B., Phillips, J., NiemczuraS., Ling, P.-Y. & Wolfe, R. E. (2017). Global Man-made Impervious Surface (GMIS) Dataset From Landsat, Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC), 1. https://doi.org/10.7927/H4P55KKF
Changnon, S. A. (1968). the La Porte weather anomaly—fact or fiction? Bulletin of the American Meteorological Society, 49(1), 4–11. https://doi.org/10.1175/1520-0477-49.1.4
Ching, J., Mills, G., Bechtel, B., See, L., Feddema, J., Wang, X., Ren, C., Brorousse, O., Martilli, A., Neophytou, M., Mouzourides, P., Stewart, I., Hanna, A., Ng, E., Foley, M., Alexander, P., Aliaga, D., Niyogi, D., et al. (2018). WUDAPT: An urban weather, climate, and environmental modeling infrastructure for the anthropocene. Bulletin of the American Meteorological Society, 99(9), 1907–1924. https://doi.org/10.1175/BAMS-D-16-0236.1
Demuzere, M., Kittner, J., & Bechtel, B. (2021). LCZ Generator: a web application to create Local Climate Zone maps. Frontiers in Environmental Science, 9, 637455. https://doi.org/10.3389/fenvs.2021.637455
Dewitz, J., and U.S. Geological Survey, 2021, National Land Cover Database (NLCD) 2019 Products (ver. 2.0, June 2021): U.S. Geological Survey data release, https://doi.org/10.5066/P9KZCM54.
Founda, D., & Santamouris, M. (2017). Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012). Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-11407-6
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1), 168–182. https://doi.org/10.1016/j.rse.2009.08.016
Fung, K., Tam, C., Lee, T., & Wang, Z. (2021). Comparing the Influence of Global Warming and Urban Anthropogenic Heat on Extreme Precipitation in Urbanized Pearl River Delta Area Based on Dynamical Downscaling. Journal of Geophysical Research: Atmospheres, 126(21). https://doi.org/10.1029/2021jd035047
Fung, Kwun Yip (2022). WUDAPT Level 0 training data for Austin (United States of America), submitted to the LCZ Generator. This dataset is licensed under CC BY-SA, and more information is available at https://lcz-generator.rub.de/factsheets/8951373d94e9f26b504a0052f61477ec664663b4/8951373d94e9f26b504a0052f61477ec664663b4_factsheet.html.
Geletič, J., & Lehnert, M. (2016). GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Moravian Geographical Reports, 24(3), 2–12. https://doi.org/10.1515/mgr-2016-0012
Han, J. Y., Baik, J. J., & Lee, H. (2014). Urban impacts on precipitation. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 17–30. https://doi.org/10.1007/s13143-014-0016-7
Homer, C. G., Dewitz, J. A., Fry, J. A., Coan, M. J., Hossain, S. M. N., Larson, C. R., Herold, N., McKerrow, A., Driel, V. J. N., & Wickham, J. (2011). Completion of the 2006 national land cover database for the conterminous united states. Photogrammetric Engineering and Remote Sensing, 77(9), 858–864.
Lehnert, M., Savić, S., Milošević, D., Dunjić, J., & Geletič, J. (2021). Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS International Journal of Geo-Information, 10(4), 260. https://doi.org/10.3390/ijgi10040260
Lelovics, E., Unger, J., Gál, T., & Gál, C. V. (2014). Design of an urban monitoring network based on Local Climate Zone mapping and temperature pattern modelling. Climate Research, 60(1), 51–62. https://doi.org/10.3354/cr01220
Li, D., & Bou-Zeid, E. (2013). Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology, 52(9), 2051–2064. https://doi.org/10.1175/JAMC-D-13-02.1
Li, M., Song, Y., Mao, Z., Liu, M., & Huang, X. (2016). Impacts of thermal circulations induced by urbanization on ozone formation in the Pearl River Delta region, China. Atmospheric Environment, 127(2), 382–392. https://doi.org/10.1016/j.atmosenv.2015.10.075
Liu, J., Niyogi, D. (2019) Meta-analysis of urbanization impact on rainfall modification. Scientific Reports 9(1), https://doi.org/10.1038/s41598-019-42494-2
Molnár, G., Gyöngyösi, A. Z., & Gál, T. (2019). Integration of an LCZ-based classification into WRF to assess the intra-urban temperature pattern under a heatwave period in Szeged, Hungary. Theoretical and Applied Climatology, 138(1–2), 1139–1158. https://doi.org/10.1007/s00704-019-02881-1
Oke, T. R. (1973). City size and the urban heat island. Atmospheric Environment Pergamon Pres, 7, 769–779. https://doi.org/10.1016/0004-6981(73)90140-6
Oke, T. R. (1981). Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. Journal of Climatology, 1, 237–254.
Oliveria, A., Lopes, A., & Niza, S. (2020). Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data. Urban Climate, 33(April), 100631. https://doi.org/10.1016/j.uclim.2020.100631
Patel, P., Karmakar, S., Ghosh, S., & Niyogi, D. (2020). Improved simulation of very heavy rainfall events by incorporating WUDAPT urban land use/land cover in WRF. Urban Climate, 32(March), 100616. https://doi.org/10.1016/j.uclim.2020.100616
Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental Science and Technology, 46(2), 696–703. https://doi.org/10.1021/es2030438
Qiu, C., Schmitt, M., Mou, L., Ghamisi, P., & Zhu, X. X. (2018). Feature importance analysis for local climate zone classification using a residual convolutional neural network with multi-source datasets. Remote Sensing, 10(10), 1–14. https://doi.org/10.3390/rs10101572
Ramírez-Aguilar, E. A., & Souza, L. C. (2019). Urban form and population density: Influences on Urban Heat Island intensities in Bogotá, Colombia. Urban Climate, 29, 100497. https://doi.org/10.1016/j.uclim.2019.100497
Sarrat, C., Lemonsu, A., Masson, V., & Guedalia, D. (2006). Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment, 40(10), 1743–1758. https://doi.org/10.1016/j.atmosenv.2005.11.037
Shahmohamadi, P., Che-Ani, A. I., Maulud, K. N. A., Tawil, N. M., & Abdullah, N. A. G. (2011). The impact of anthropogenic heat on formation of urban heat island and energy consumption balance. Urban Studies Research, 2011, 1–9. https://doi.org/10.1155/2011/497524
Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900. https://doi.org/10.1175/BAMS-D-11-00019.1
Stewart, I. D., Oke, T. R., & Krayenhoff, E. S. (2014). Evaluation of the “local climate zone” scheme using temperature observations and model simulations. International Journal of Climatology, 34(4), 1062–1080. https://doi.org/10.1002/joc.3746
Swamy, G., Shiva Nagendra, S. M., & Schlink, U. (2017). Urban Heat Island (UHI) influence on secondary pollutant formation in a tropical humid environment. Journal of the Air and Waste Management Association, 67(10), 1080–1091. https://doi.org/10.1080/10962247.2017.1325417
Tisdale, H. (1942). The Process of Urbanization. Social Forces, 20(3), 311–316. https://doi.org/10.2307/3005615
United Nations, Department of Economic and Social Affairs, Population Division (2019). World Urbanization Prospects 2018: Highlights (ST/ESA/SER.A/421).
Vuckovic, M., Hammerberg, K., & Mahdavi, A. (2020). Urban weather modeling applications: a Vienna case study. Building Simulation, 13(1), 99–111. https://doi.org/10.1007/s12273-019-0564-y
Yang, L., Huang, C., Homer, C., Wylie, B., & Coan, M. (2003). An approach for mapping large-area impervious surfaces: synergistic use of Landsat-7 ETM+ and high spatial resolution imagery. Canadian Journal of Remote Sensing, 29(2), 230–240. https://doi.org/10.5589/m02-098
Yang, X., Peng, L. L. H., Chen, Y., Yao, L., & Wang, Q. (2020). Air humidity characteristics of local climate zones: A three-year observational study in Nanjing. Building and Environment, 171, 106661. https://doi.org/10.1016/j.buildenv.2020.106661
Yoo, C., Han, D., Im, J., & Bechtel, B. (2019). Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 157(September), 155–170. https://doi.org/10.1016/j.isprsjprs.2019.09.009
Yoo, C., Lee, Y., Cho, D., Im, J., & Han, D. (2020). Improving local climate zone classification using incomplete building data and Sentinel 2 images based on convolutional neural networks. Remote Sensing, 12(21), 1–22. https://doi.org/10.3390/rs12213552
Zhao, L., Oppenheimer, M., Zhu, Q., Baldwin, J. W., Ebi, K. L., Bou-Zeid, E., Guan, K., & Liu, X. (2018). Interactions between urban heat islands and heat waves. Environmental Research Letters, 13(3). https://doi.org/10.1088/1748-9326/aa9f73
Zhao, Z., Shen, L., Li, L., Wang, H., & He, B. (2020). Local Climate Zone Classification Scheme Can Also Indicate Local-Scale Urban Ventilation Performance: An Evidence-Based Study.
Zhou, B., Rybski, D., & Kropp, J. P. (2017). The role of city size and urban form in the surface urban heat island. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-04242-2