Improving the forecast performance of landslide susceptibility mapping by using ensemble gradient boosting algorithms

Hang Ha1, Quynh Duy Bui1, Dinh Trong Tran1, Dinh Quoc Nguyen2, Hanh Xuan Bui3, Chinh Luu4
1Department of Geodesy and Geomatics, Hanoi University of Civil Engineering, Hanoi, Vietnam
3Transport Engineering Design Incorporated, Hanoi, Vietnam
4Faculty of Hydraulic Engineering, Hanoi University of Civil Engineering, Hanoi, Vietnam

Tóm tắt

Landslide is the most dangerous natural hazard in mountainous regions. Disasters due to landslides annually result in human casualties, destroyed property, and monetary damages. Landslide susceptibility maps, highlighting landslide-prone areas, can provide useful spatial information for risk management and mitigation. These maps are required to be updated continuously because of the complexity of the landslide formation and movement processes. This underlines the need to develop and use cutting-edge machine learning algorithms to produce more landslide predictive maps. The study aimed to compare the predictive performance of advanced gradient boosting algorithms for modeling landslide susceptibility, including Gradient Boosting (GB), Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CB), and Natural Gradient Boosting (NGBoost). Fifteen landslide influencing factors were collected and selected based on the relationship between historical landslide locations and local geo-environmental characteristics. The statistical parameters were used to compare and verify the models’ predictive performance. All proposed models have excellent forecast performances, of which the CB model has the best forecast performance (AUC = 0.921), followed by the GB model (AUC = 0.915), the LightGBM model (AUC = 0.911), the NGBoost (AUC = 0.900), and the XGBoost model (AUC = 0.897). Landslide susceptibility maps created by the CB model are recommended for the Bac Kan province in Vietnam after being validated with current landslide events recorded by the Vietnam Disasters Monitoring System. There is potential for gradient boosting models and landslide susceptibility maps to improve disaster management activities in hilly regions.

Từ khóa


Tài liệu tham khảo

Abuzied, S. M., & Alrefaee, H. A. (2019). Spatial prediction of landslide-susceptible zones in El-Qaá area, Egypt, using an integrated approach based on GIS statistical analysis. Bulletin of Engineering Geology and the Environment, 78, 2169–2195. https://doi.org/10.1007/s10064-018-1302-x Achour, Y., & Pourghasemi, H. R. (2020). How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers, 11(3), 871–883. https://doi.org/10.1016/j.gsf.2019.10.001 Adnan, M. S. G., Dewan, A., Zannat, K. E., & Abdullah, A. Y. M. (2019). The use of watershed geomorphic data in flash flood susceptibility zoning: A case study of the Karnaphuli and Sangu river basins of Bangladesh. Natural Hazards, 99, 425–448. https://doi.org/10.1007/s11069-019-03749-3 Arabameri, A., Pradhan, B., Rezaei, K., Lee, S., & Sohrabi, M. (2020a). An ensemble model for landslide susceptibility mapping in a forested area. Geocarto International, 35(15), 1680–1705. https://doi.org/10.1080/10106049.2019.1585484 Arabameri, A., Saha, S., Roy, J., Chen, W., Blaschke, T., & Tien Bui, D. (2020b). Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran. Remote Sensing, 12(3), 475. https://doi.org/10.3390/rs12030475 Bai, H., Xie, N., Di, X., & Ye, Q. (2020). Famd: A fast multifeature android malware detection framework, design, and implementation. IEEE Access, 8, 194729–194740. https://doi.org/10.1109/ACCESS.2020.3033026 Bai, S.-B., Wang, J., Lü, G.-N., Zhou, P.-G., Hou, S.-S., & Xu, S.-N. (2010). GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology, 115(1–2), 23–31. https://doi.org/10.1016/j.geomorph.2009.09.025 Ballabio, C., & Sterlacchini, S. (2012). Support vector machines for landslide susceptibility mapping: The Staffora River Basin case study, Italy. Mathematical Geosciences, 44, 47–70. https://doi.org/10.1007/s11004-011-9379-9 Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834 Bezak, N., Šraj, M., & Mikoš, M. (2016). Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides. Journal of Hydrology, 541, 272–284. https://doi.org/10.1016/j.jhydrol.2016.02.058 Bourenane, H., Guettouche, M. S., Bouhadad, Y., & Braham, M. (2016). Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arabian Journal of Geosciences, 9, 1–24. https://doi.org/10.1007/s12517-015-2222-8 Brownlee, J. (2016). A gentle introduction to the gradient boosting algorithm for machine learning. Machine Learning Mastery, 21. Bui, Q. D., Ha, H., Khuc, D. T., Nguyen, D. Q., von Meding, J., Nguyen, L. P., & Luu, C. (2023). Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam. Natural Hazards, 116(2), 2283–2309. https://doi.org/10.1007/s11069-022-05764-3 Candido, C., Blanco, A., Medina, J., Gubatanga, E., Santos, A., Ana, R. S., & Reyes, R. (2021). Improving the consistency of multi-temporal land cover mapping of Laguna lake watershed using light gradient boosting machine (LightGBM) approach, change detection analysis, and Markov chain. Remote Sensing Applications: Society and Environment, 23, 100565. https://doi.org/10.1016/j.rsase.2021.100565 Chanu, M. L., & Bakimchandra, O. (2022). Landslide susceptibility assessment using AHP model and multi resolution DEMs along a highway in Manipur, India. Environmental Earth Sciences, 81(5), 156. https://doi.org/10.1007/s12665-022-10281-4 Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. https://doi.org/10.1145/2939672.2939785 Chen, C.-Y., & Yu, F.-C. (2011). Morphometric analysis of debris flows and their source areas using GIS. Geomorphology, 129(3–4), 387–397. https://doi.org/10.1016/j.geomorph.2011.03.002 Chen, W., Zhao, X., Shahabi, H., Shirzadi, A., Khosravi, K., Chai, H., Zhang, S., Zhang, L., Ma, J., & Chen, Y. (2019). Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree. Geocarto International, 34(11), 1177–1201. https://doi.org/10.1080/10106049.2019.1588393 Cheng, J., Sun, J., Yao, K., Xu, M., & Cao, Y. (2022). A variable selection method based on mutual information and variance inflation factor. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 268, 120652. https://doi.org/10.1016/j.saa.2021.120652 Dai, F., & Lee, C. (2001). Frequency–volume relation and prediction of rainfall-induced landslides. Engineering Geology, 59(3–4), 253–266. https://doi.org/10.1016/S0013-7952(00)00077-6 Dai, F., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1), 65–87. https://doi.org/10.1016/S0013-7952(01)00093-X Dong, S., Khattak, A., Ullah, I., Zhou, J., & Hussain, A. (2022). Predicting and analyzing road traffic injury severity using boosting-based ensemble learning models with SHAPley Additive exPlanations. International Journal of Environmental Research and Public Health, 19(5), 2925. https://doi.org/10.3390/ijerph19052925 Dou, J., Yunus, A. P., Merghadi, A., Shirzadi, A., Nguyen, H., Hussain, Y., Avtar, R., Chen, Y., Pham, B. T., & Yamagishi, H. (2020). Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Science of the Total Environment, 720, 137320. https://doi.org/10.1016/j.scitotenv.2020.137320 Duan, T., Anand, A., Ding, D. Y., Thai, K. K., Basu, S., Ng, A., & Schuler, A. (2020). Ngboost: Natural gradient boosting for probabilistic prediction. In Proceedings of the 37th international conference on machine learning, Online (Vol. 119). PMLR. Duc, D. M., Duc, D. M., & Ngoc, D. M. (2018). Effects of residual soil characteristics on rainfall-induced shallow landslides along transport arteries in Bac Kan Province, Vietnam. In Advances and applications in geospatial technology and earth resources: Proceedings of the international conference on geo-spatial technologies and earth resources 2017. https://doi.org/10.1007/978-3-319-68240-2_13 Erener, A., & Düzgün, H. S. B. (2010). Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway). Landslides, 7, 55–68. https://doi.org/10.1007/s10346-009-0188-x Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics. https://doi.org/10.1214/aos/1013203451 Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161–2181. https://doi.org/10.5194/nhess-18-2161-2018 Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., & Reichenbach, P. (2008). Comparing landslide inventory maps. Geomorphology, 94(3–4), 268–289. https://doi.org/10.1016/j.geomorph.2006.09.023 Gao, J., & Sang, Y. (2017). Identification and estimation of landslide-debris flow disaster risk in primary and middle school campuses in a mountainous area of Southwest China. International Journal of Disaster Risk Reduction, 25, 60–71. https://doi.org/10.1016/j.ijdrr.2017.07.012 Gauthier, T. D. (2001). Detecting trends using Spearman’s rank correlation coefficient. Environmental Forensics, 2(4), 359–362. https://doi.org/10.1006/enfo.2001.0061 Grima, N., Edwards, D., Edwards, F., Petley, D., & Fisher, B. (2020). Landslides in the Andes: Forests can provide cost-effective landslide regulation services. Science of the Total Environment, 745, 141128. https://doi.org/10.1016/j.scitotenv.2020.141128 Ha, H., Luu, C., Bui, Q. D., Pham, D.-H., Hoang, T., Nguyen, V.-P., Vu, M. T., & Pham, B. T. (2021). Flash flood susceptibility prediction mapping for a road network using hybrid machine learning models. Natural Hazards, 109(1), 1247–1270. https://doi.org/10.1007/s11069-021-04877-5 Hao, J., & Ho, T. K. (2019). Machine learning made easy: A review of scikit-learn package in python programming language. Journal of Educational and Behavioral Statistics, 44(3), 348–361. https://doi.org/10.3102/1076998619832248 Haque, U., Da Silva, P. F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., & Lee, J. (2019). The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment, 682, 673–684. https://doi.org/10.1016/j.scitotenv.2019.03.415 Hemasinghe, H., Rangali, R. S., Deshapriya, N., & Samarakoon, L. (2018). Landslide susceptibility mapping using logistic regression model (a case study in Badulla District, Sri Lanka). Procedia Engineering, 212, 1046–1053. https://doi.org/10.1016/j.proeng.2018.01.135 Hong, Y., Adler, R., & Huffman, G. (2006). Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophysical Research Letters. https://doi.org/10.1029/2006GL028010 Hong, H., Liu, J., & Zhu, A.-X. (2020). Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Science of the Total Environment, 718, 137231. https://doi.org/10.1016/j.scitotenv.2020.137231 Hu, X., Huang, C., Mei, H., & Zhang, H. (2021). Landslide susceptibility mapping using an ensemble model of Bagging scheme and random subspace–based naïve Bayes tree in Zigui County of the Three Gorges Reservoir Area, China. Bulletin of Engineering Geology and the Environment, 80(7), 5315–5329. https://doi.org/10.1007/s10064-021-02275-6 Hu, X., Zhang, H., Mei, H., Xiao, D., Li, Y., & Li, M. (2020). Landslide susceptibility mapping using the stacking ensemble machine learning method in Lushui, Southwest China. Applied Sciences, 10(11), 4016. https://doi.org/10.3390/app10114016 Huang, Q.-X., Xu, X.-T., Kulatilake, P., & Lin, F. (2020). Formation mechanism of a rainfall triggered complex landslide in southwest China. Journal of Mountain Science, 17(5), 1128–1142. https://doi.org/10.1007/s11629-019-5736-9 Huang, Y., & Zhao, L. (2018). Review on landslide susceptibility mapping using support vector machines. CATENA, 165, 520–529. https://doi.org/10.1016/j.catena.2018.03.003 IFRC. (2021). Viet Nam, flooding, landslide, storm and wind in central regions and central highlands (19 Oct 2021). Retrieved July 27, 2022, from https://reliefweb.int/report/viet-nam/viet-nam-flooding-landslide-storm-and-wind-central-regions-and-central-highlands-19 Jia, N., Mitani, Y., Xie, M., & Djamaluddin, I. (2012). Shallow landslide hazard assessment using a three-dimensional deterministic model in a mountainous area. Computers and Geotechnics, 45, 1–10. https://doi.org/10.1016/j.compgeo.2012.04.007 Kavzoglu, T., & Teke, A. (2022). Predictive performances of ensemble machine learning algorithms in landslide susceptibility mapping using random forest, extreme gradient boosting (XGBoost) and natural gradient boosting (NGBoost). Arabian Journal for Science and Engineering, 47(6), 7367–7385. https://doi.org/10.1007/s13369-022-06560-8 Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. -Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems Khosravi, K., Pham, B. T., Chapi, K., Shirzadi, A., Shahabi, H., Revhaug, I., Prakash, I., & Bui, D. T. (2018). A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 627, 744–755. https://doi.org/10.1016/j.scitotenv.2018.01.266 Kutlug Sahin, E., & Colkesen, I. (2021). Performance analysis of advanced decision tree-based ensemble learning algorithms for landslide susceptibility mapping. Geocarto International, 36(11), 1253–1275. https://doi.org/10.1080/10106049.2019.1641560 Lombardo, L., & Mai, P. M. (2018). Presenting logistic regression-based landslide susceptibility results. Engineering Geology, 244, 14–24. https://doi.org/10.1016/j.enggeo.2018.07.019 Mahdadi, F., Boumezbeur, A., Hadji, R., Kanungo, D. P., & Zahri, F. (2018). GIS-based landslide susceptibility assessment using statistical models: A case study from Souk Ahras province, NE Algeria. Arabian Journal of Geosciences, 11, 1–21. https://doi.org/10.1007/s12517-018-3770-5 Melchiorre, C., Matteucci, M., Azzoni, A., & Zanchi, A. (2008). Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology, 94(3–4), 379–400. https://doi.org/10.1016/j.geomorph.2006.10.035 Mindje, R., Li, L., Nsengiyumva, J. B., Mupenzi, C., Nyesheja, E. M., Kayumba, P. M., Gasirabo, A., & Hakorimana, E. (2020). Landslide susceptibility and influencing factors analysis in Rwanda. Environment, Development and Sustainability, 22, 7985–8012. https://doi.org/10.1007/s10668-019-00557-4 Mirzaei, S., Vafakhah, M., Pradhan, B., & Alavi, S. J. (2021). Flood susceptibility assessment using extreme gradient boosting (EGB), Iran. Earth Science Informatics, 14, 51–67. https://doi.org/10.1007/s12145-020-00530-0 Moore, I. D., Grayson, R., & Ladson, A. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30. https://doi.org/10.1002/hyp.3360050103 Morar, C., Lukić, T., Basarin, B., Valjarević, A., Vujičić, M., Niemets, L., Telebienieva, I., Boros, L., & Nagy, G. (2021). Shaping sustainable urban environments by addressing the hydro-meteorological factors in landslide occurrence: Ciuperca Hill (Oradea, Romania). International Journal of Environmental Research and Public Health, 18(9), 5022. https://doi.org/10.3390/ijerph18095022 Murray, L., Nguyen, H., Lee, Y.-F., Remmenga, M. D., & Smith, D. W. (2012). Variance inflation factors in regression models with dummy variables. Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/2475-7772.1034 Naghibi, S. A., Pourghasemi, H. R., Pourtaghi, Z. S., & Rezaei, A. (2015). Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Science Informatics, 8, 171–186. https://doi.org/10.1007/s12145-014-0145-7 Nguyen, D. H., Nguyen, T. H. V., Le, Q. H., Pham, V. S., & Nguyen, H. K. (2017). TXT-tool 2.084–3.1 rainfall thresholds for triggering geohazards in Bac Kan Province (Vietnam). In Landslide dynamics: ISDR-ICL landslide interactive teaching tools: Volume 1: Fundamentals, mapping and monitoring (pp. 351–360). Springer. https://doi.org/10.1007/978-3-319-57774-6_25 Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10), 927–930. https://doi.org/10.1130/G33217.1 Pham, N. T. T., Nong, D., & Garschagen, M. (2019). Farmers’ decisions to adapt to flash floods and landslides in the Northern Mountainous Regions of Vietnam. Journal of Environmental Management, 252, 109672. https://doi.org/10.1016/j.jenvman.2019.109672 Polykretis, C., Chalkias, C., & Ferentinou, M. (2019). Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area. Bulletin of Engineering Geology and the Environment, 78, 1173–1187. https://doi.org/10.1007/s10064-017-1125-1 Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: Unbiased boosting with categorical features. In 32nd conference on neural information processing systems (NeurIPS 2018), Montréal, Canada. Rahmati, O., Yousefi, S., Kalantari, Z., Uuemaa, E., Teimurian, T., Keesstra, S., Pham, T. D., & Tien Bui, D. (2019). Multi-hazard exposure mapping using machine learning techniques: A case study from Iran. Remote Sensing, 11(16), 1943. https://doi.org/10.3390/rs11161943 Raja, N. B., Çiçek, I., Türkoğlu, N., Aydin, O., & Kawasaki, A. (2017). Landslide susceptibility mapping of the Sera River Basin using logistic regression model. Natural Hazards, 85, 1323–1346. https://doi.org/10.1007/s11069-016-2591-7 Rasyid, A. R., Bhandary, N. P., & Yatabe, R. (2016). Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters, 3, 1–16. https://doi.org/10.1186/s40677-016-0053-x Sahin, E. K. (2020). Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Applied Sciences, 2(7), 1308. https://doi.org/10.1007/s42452-020-3060-1 Sahin, E. K. (2022). Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocarto International, 37(9), 2441–2465. https://doi.org/10.1080/10106049.2020.1831623 Saito, H., Nakayama, D., & Matsuyama, H. (2009). Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains, Japan. Geomorphology, 109(3–4), 108–121. https://doi.org/10.1016/j.geomorph.2009.02.026 Sarker, A. A., & Rashid, A. M. (2013). Landslide and flashflood in Bangladesh. Disaster risk reduction approaches in Bangladesh (pp. 165–189). Springer. https://doi.org/10.1007/978-4-431-54252-0_8 Shirzadi, A., Soliamani, K., Habibnejhad, M., Kavian, A., Chapi, K., Shahabi, H., Chen, W., Khosravi, K., Thai Pham, B., & Pradhan, B. (2018). Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors, 18(11), 3777. https://doi.org/10.3390/s18113777 Šilhán, K. (2020). Dendrogeomorphology of landslides: Principles, results and perspectives. Landslides, 17(10), 2421–2441. https://doi.org/10.1007/s10346-020-01397-4 Son, H. N., Chi, D. T. L., & Kingsbury, A. (2019). Indigenous knowledge and climate change adaptation of ethnic minorities in the mountainous regions of Vietnam: A case study of the Yao people in Bac Kan Province. Agricultural Systems, 176, 102683. https://doi.org/10.1016/j.agsy.2019.102683 Tang, J., Liu, G., Xie, Y., Wu, Y., Wang, D., Gao, Y., & Meng, L. (2022). Effect of topographic variations and tillage methods on gully erosion in the black soil region: A case-study from Northeast China. Land Degradation & Development, 33(18), 3786–3800. https://doi.org/10.1002/ldr.4423 Tang, Y., Feng, F., Guo, Z., Feng, W., Li, Z., Wang, J., Sun, Q., Ma, H., & Li, Y. (2020). Integrating principal component analysis with statistically-based models for analysis of causal factors and landslide susceptibility mapping: A comparative study from the loess plateau area in Shanxi (China). Journal of Cleaner Production, 277, 124159. https://doi.org/10.1016/j.jclepro.2020.124159 Thompson, C. G., Kim, R. S., Aloe, A. M., & Becker, B. J. (2017). Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic and Applied Social Psychology, 39(2), 81–90. https://doi.org/10.1080/01973533.2016.1277529 Tien Bui, D., Ho, T.-C., Pradhan, B., Pham, B.-T., Nhu, V.-H., & Revhaug, I. (2016). GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environmental Earth Sciences, 75, 1–22. https://doi.org/10.1007/s12665-016-5919-4 Tien Bui, D., Shahabi, H., Omidvar, E., Shirzadi, A., Geertsema, M., Clague, J. J., Khosravi, K., Pradhan, B., Pham, B. T., & Chapi, K. (2019). Shallow landslide prediction using a novel hybrid functional machine learning algorithm. Remote Sensing, 11(8), 931. https://doi.org/10.3390/rs11080931 Van Hoang, N., Hung, H. V., & Cuong, T. Q. (2021). Characteristics and affecting factors of sinkhole development in Cho Don Area, Bac Kan Province, Vietnam. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/690/1/012025 Van Westen, C., Rengers, N., & Soeters, R. (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30, 399–419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e Wang, Y., Fang, Z., & Hong, H. (2019). Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Science of the Total Environment, 666, 975–993. https://doi.org/10.1016/j.scitotenv.2019.02.263 Wotchoko, P., Bardintzeff, J.-M., Itiga, Z., Nkouathio, D. G., Guedjeo, C. S., Ngnoupeck, G., Dongmo, A. K., & Wandji, P. (2016). Geohazards (floods and landslides) in the Ndop Plain, Cameroon volcanic line. Open Geosciences, 8(1), 429–449. https://doi.org/10.1515/geo-2016-0030 Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA, 72(1), 1–12. https://doi.org/10.1016/j.catena.2007.01.003 Ye, P., Yu, B., Chen, W., Liu, K., & Ye, L. (2022). Rainfall-induced landslide susceptibility mapping using machine learning algorithms and comparison of their performance in Hilly area of Fujian Province, China. Natural Hazards, 113(2), 965–995. https://doi.org/10.1007/s11069-022-05332-9 Zhang, T., Han, L., Chen, W., & Shahabi, H. (2018). Hybrid integration approach of entropy with logistic regression and support vector machine for landslide susceptibility modeling. Entropy, 20(11), 884. https://doi.org/10.3390/e20110884