Improving the cycling stability of Na3V2(PO4)3 nanoparticle in aqueous sodium ion batteries by introducing carbon support

Huajun Zhou1, Zheng Tian2, Simon S. Ang1
1High Density Electronics Center, University of Arkansas, Fayetteville, USA
2Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Li, X.N., Zhu, X.B., Liang, J.W., Hou, Z.G., Wang, Y., Lin, N., Zhu, Y.C., Qian, Y.T.: Graphene-supported NaTi2(PO4)3 as a high rate anode material for aqueous sodium ion batteries. J. Electrochem. Soc. 161, A1181–A1187 (2014)

Li, Z., Young, D., Xiang, K., Carter, W.C., Chiang, Y.M.: Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy. Mater. 3, 290–294 (2013)

Park, S.I., Gocheva, I., Okada, S., Yamaki, J.I.: Electrochemical properties of NaTi2(PO4)3 anodes for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 158, A1067–A1070 (2011)

Wu, W., Mohamed, A., Whitacre, J.F.: Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode. J. Electrochem. Soc. 160(3), A497–A504 (2013)

Wu, X.Y., Sun, M.Y., Shen, Y.F., Qian, J.F., Cao, Y.L., Ai, X.P., Yang, H.X.: Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem. 7(2), 407–411 (2014)

Qin, H., Song, Z.P., Zhan, H., Zhou, Y.H.: Aqueous rechargeable alkali-ion batteries with polyimide anode. J. Power Sources 249, 367–372 (2014)

Kumar, P.R., Jung, Y.H., Lima, C.H., Kim, D.K.: Na3V2O2x(PO4)2F3−2x: a stable and high-voltage cathode material for aqueous sodium-ion batteries with high energy density. J. Mater. Chem. A 3, 6271–6275 (2015)

Mason, C.W., Lange, F.: Aqueous ion battery systems using sodium vanadium phosphate stabilized by titanium substitution. ECS Electrochem. Lett. 4(8), A79–A82 (2015)

Zatovsky, I.V.: NASICON-type Na3V2(PO4)3. Acta Cryst. E66, i12 (2010)

Zhu, C.B., Song, K.P., van Aken, P.A., Maier, J., Yu, Y.: Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 14, 2175–2180 (2014)

Jian, Z.L., Zhao, L., Pan, H.L., Hu, Y.S., Li, H., Chen, W., Chen, L.Q.: Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86–89 (2012)

Jian, Z.L., Yuan, C.C., Han, W.Z., Lu, X., Gu, L., Xi, X.K., Hu, Y.S., Li, H., Chen, W., Chen, D.F., Ikuhara, Y., Chen, L.Q.: Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv. Funct. Mater. 24, 4265–4272 (2014)

Plashnitsa, L.S., Kobayashi, E., Noguchi, Y., Okada, S., Yamakia, J.I.: Performance of NASICON symmetric cell with ionic liquid electrolyte. J. Electrochem. Soc. 157(4), A536–A543 (2010)

Aragon, M.J., Lavela, P., Ortiz, G.F., Tirado, J.L.: Effect of iron substitution in electrochem. Performance of Na3V2(PO4)3 as cathode for Na-ion batteries. J. Electrochem. Soc. 162(2), A3077–A3083 (2015)

Jian, Z.L., Han, W.Z., Lu, X., Yang, H.X., Hu, Y.S., Zhou, J.: Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2013)

Song, W.X., Ji, X.B., Zhu, Y.R., Zhu, H.J., Li, F.Q., Chen, J., Lu, F., Yao, Y.P., Banks, C.E.: Aqueous sodium-ion battery using a Na3V2(PO4)3 electrode. ChemElectrochem 1, 871–876 (2014)

Song, W.X., Ji, X.B., Wu, Z.P., Zhu, Y.R., Yang, Y.C., Chen, J., Jing, M.J., Li, F.Q., Banks, C.E.: First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J. Mater. Chem. A 2, 5358–5362 (2014)

Spek, A.L.: PLATON, Version 1.62, University of Utrecht, 1999

Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr. A 32, 751–767 (1974)

Feng, Q., Miyai, Y., Kanoh, H., Ooi, L.: Hydrothermal synthesis of lithium and sodium manganese oxides and their metal ion extraction-insertion reactions. Chem. Mater. 7, 1226–1232 (1995)

Kim, D.H., Kim, J.: Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid-State Lett. 9(9), A439–A442 (2006)

Li, S., Dong, Y.F., Xu, L., Xu, X., He, L., Mai, L.Q.: Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545–3553 (2014)

Li, Z., Ravnsbæk, D.B., Xiang, K., Chiang, Y.M.: Na3Ti2(PO4)3 as a sodium-bearing anode for rechargeable aqueous sodium-ion batteries. Electrochem. Commun. 44, 12–15 (2014)

Zhang, M.J., Dahn, J.R.: Electrochemical lithium intercalation in VO2 (B) in aqueous electrolytes. J. Electrochem. Soc. 143, 2730–2735 (1996)

Song, W.X., Cao, X.Y., Wu, Z.P., Chen, J., Huangfu, K.L., Wang, X.W., Huang, Y.L., Ji, X.B.: A study into the extracted ion number for NASICON structured Na3V2(PO4)3 in sodium-ion batteries. Phys. Chem. Chem. Phys. 16, 17681–17687 (2014)

Kanoh, H., Tang, W.P., Makita, Y., Ooi, K.: Electrochemical intercalation of alkali-metal ions into birnessite-type manganese oxide in aqueous solution. Langmuir 13, 6845–6849 (1997)

Wang, Y.G., Lou, J.Y., Wu, W., Wang, C.X., Xia, Y.Y.: Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds III. capacity fading mechanism of LiCo1/3Ni1/3Mn1/3O2 at different pH electrolyte solutions. J. Electrochem. Soc. 154(3), A228–A234 (2007)

Bell, L.C., Posner, A.M., Quirk, J.P.: The point of zero charge of hydroxyapatite and fluorapatite in aqueous solutions. J. Colloid. Interf. Sci. 42(2), 250–261 (1973)

Parks, G.A.: The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 65(2), 177–198 (1965)

Wang, G.J., Fu, L.J., Zhao, N.H., Yang, L.C., Wu, Y.P., Wu, H.Q.: An aqueous rechargeable lithium battery with good cycling performance. Angew. Chem. Int. Ed. 46, 295–297 (2007)

Luo, J.Y., Cui, W.J., He, P., Xia, Y.Y.: Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010)

Wei, D.H., Liang, J.W., Zhu, Y.C., Yuan, Z.Q., Li, N., Qian, Y.T.: formation of graphenewrapped nanocrystals at room temperature through the colloidal coagulation effect. Part. Part. Syst. Char. 30, 143–147 (2013)

Zhao, B.D., Lin, B., Zhang, S., Deng, C.: A frogspawn-inspired hierarchical porous NaTi2(PO4)3-C array for high-rate and long-life aqueous rechargeable sodium batteries. Nanoscale 7(44), 18552–18560 (2015)