Improving the bed movement physics of inclined grate biomass CFD simulations

Applied Thermal Engineering - Tập 182 - Trang 116043 - 2021
Luis G. Varela1, M.A. Gómez1, Marco Garabatos1, Daniel Glez-Peña2, J. Porteiro1
1Energy Technology Group (GTE), CINTECX, Universidade de Vigo, Spain
2Next Generation Computer Systems Group (SING), Software Engineering School, Universidade de Vigo, Spain

Tài liệu tham khảo

Owusu, 2016, A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent Eng., 10.1080/23311916.2016.1167990 W.E. Council, World Energy Resources. 2016, World Energy Council, 2016. Islas, 2019, Solid biomass to heat and power, 145 Ralph, 1998, Biomass-fired power generation, Fuel Process. Technol. I.E. Agency, World Energy Outlook 2018, International Energy Agency, 2018. Demirbaş, 2001, Biomass resource facilities and biomass conversion processing for fuels and chemicals, Energy Convers. Manage., 42, 1357, 10.1016/S0196-8904(00)00137-0 Sánchez, 2019, Biomass resources, 25 Bunn, 2019, Analysis of coal conversion to biomass as a transitional technology, Renew. Energy, 132, 752, 10.1016/j.renene.2018.08.045 Patiño, 2016, Experimental analysis of fouling rates in two small-scale domestic boilers, Appl. Therm. Eng., 100, 849, 10.1016/j.applthermaleng.2016.02.112 Chapela, 2018, Comprehensive CFD modeling of the ash deposition in a biomass packed bed burner, Fuel, 234, 1099, 10.1016/j.fuel.2018.07.121 Chapela, 2019, CFD study of fouling phenomena in small-scale biomass boilers: Experimental validation with two different boilers, Renew. Energy, 140, 552, 10.1016/j.renene.2019.03.081 Patiño, 2019, Characterization of biomass PM emissions using thermophoretic sampling: composition and morphological description of the carbonaceous residues, J. Aeros. Sci., 127, 49, 10.1016/j.jaerosci.2018.10.005 Regueiro, 2017, Experimental study on the fouling behaviour of an underfeed fixed-bed biomass combustor, Appl. Therm. Eng., 112, 523, 10.1016/j.applthermaleng.2016.10.105 Serrano, 2011, Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets, Fuel Process. Technol., 92, 699, 10.1016/j.fuproc.2010.11.031 G.R.D. Ciolkosz, D. Swomley, H. Yi, V.M. Puri, R. Hilton, Farm-Scale Biomass Pelletizer Performance for Switchgrass Pellet Production, Written presentation2013ASABEAnnualInternationalMeeting, 2013. Pradhan, 2018, Production and utilization of fuel pellets from biomass: a review, Fuel Process. Technol., 181, 215, 10.1016/j.fuproc.2018.09.021 Agar, 2018, A systematic study of ring-die pellet production from forest and agricultural biomass, Fuel Process. Technol., 180, 47, 10.1016/j.fuproc.2018.08.006 Mediavilla, 2012, Optimisation of pelletisation conditions for poplar energy crop, Fuel Process. Technol., 104, 7, 10.1016/j.fuproc.2012.05.031 Tumuluru, 2016, Specific energy consumption and quality of wood pellets produced using high-moisture lodgepole pine grind in a flat die pellet mill, Chem. Eng. Res. Des., 110, 82, 10.1016/j.cherd.2016.04.007 M.M. Aaron Turner Tyler Mark Joshua Jackson, Densification of biomass using a pilot scale flat ring roller pellet mill, Fuel Process. Technol., 2016. D.L. Davidson, The Bridge. Linking Engineering and Society, The Role of Computational Fluid Dynamics in Process Industries, 2002. Pérez-Orozco, 2019, Influence of the feeding rate on the transient behavior of a biomass combustor, Chem. Eng. Technol., 42, 2520, 10.1002/ceat.201800679 J. Porteiro, Desarrollo de un Modelo Estático y Dinámico de Combustión de Partículas de Biomasa en Lecho Fijo y Contraste Experimental. Aplicación a una Caldera de Baja Potencia., Industrial Engineer of University of Vigo, 2005. Porteiro, 2009, Numerical modeling of a biomass pellet domestic boiler, Energy Fuels, 23, 1067, 10.1021/ef8008458 Collazo, 2012, Numerical modeling of the combustion of densified wood under fixed-bed conditions, Fuel, 93, 149, 10.1016/j.fuel.2011.09.044 Gómez, 2015, Eulerian CFD modelling for biomass combustion. Transient simulation of an underfeed pellet boiler, Energy Convers. Manage., 101, 666, 10.1016/j.enconman.2015.06.003 Gómez, 2015, Eulerian CFD modelling for biomass combustion. Transient simulation of an underfeed pellet boiler, Energy Convers. Manage., 105, 666, 10.1016/j.enconman.2015.06.003 Simsek, 2009, Numerical simulation of grate firing systems using a coupled CFD/discrete element method (DEM), Powder Technol., 193, 266, 10.1016/j.powtec.2009.03.011 Mahmoudi, 2015, An experimental and numerical study of wood combustion in a fixed bed using Euler–Lagrange approach (XDEM), Fuel, 150, 573, 10.1016/j.fuel.2015.02.008 Wiese, 2016, DEM/CFD modeling of the fuel conversion in a pellet stove, Fuel Process. Technol., 152, 223, 10.1016/j.fuproc.2016.06.005 Varela, 2019, Improving bed movement physics in biomass computational fluid dynamics combustion simulations, Chem. Eng. Technol., 42, 2556, 10.1002/ceat.201800674 van der, 2000, Modelling and experiments of straw combustion in a grate and furnace, Biomass Bioenergy, 10.1016/S0961-9534(00)00033-7 Jensen, 2005, Numerical modeling of straw combustion in a fixed bed, Fuel Kær, 2004, Numerical modelling of a straw-fired grate boiler, Fuel, 83, 1183, 10.1016/j.fuel.2003.12.003 Goh, 2002, Mathematical modelling of MSW incineration on a travelling bed, Waste Manag. Hermansson, 2011, CFD modelling of bed shrinkage and channelling in fixed-bed combustion, Combust. Flame, 158, 988, 10.1016/j.combustflame.2011.01.022 van der, 2000, Modelling and experiments of straw combustion in a grate and furnace, Biomass Bioenergy, 19, 2000 Yin, 2008, Mathematical modeling and experimental study of biomass combustion in a thermal 108 MW grate-fired boiler, Energy Fuels, 22, 1380, 10.1021/ef700689r Yang, 2004, Study on the transient process of waste fuel incineration in a full-scale moving-bed furnace, Combust. Sci. Technol., 177, 127, 10.1080/00102200590883796 Miljković, 2013, Mathematical modelling of straw combustion in a moving bed combustor: A two dimensional approach, Fuel, 104, 351, 10.1016/j.fuel.2012.08.017 Peters, 2002, Measurements and application of a discrete particle model (DPM) to simulate combustion of a packed bed of individual fuel particles, Combust. Flame, 131, 132, 10.1016/S0010-2180(02)00393-0 Wissing, 2017, Simulating municipal solid waste incineration with a DEM/CFD method – influences of waste properties, grate and furnace design, Fuel, 206, 638, 10.1016/j.fuel.2017.06.037 A.W. Stefan Stangl, Robert Scharler, Ingwald Obernberger, Ramin Mehrabian, CFD simulation of biomass grate furnaces with a comprehensive 3D packed bed model, in: Proceedings of the 25th German Flame Day, Karlsruhe, Germany, September, 2011. Karim, 2018, CFD modelling of combustion and associated emission of wet woody biomass in a 4 MW moving grate boiler, Fuel, 222, 656, 10.1016/j.fuel.2018.02.195 Gómez, 2014, CFD modelling of thermal conversion and packed bed compaction in biomass combustion, Fuel, 117, 716, 10.1016/j.fuel.2013.08.078 Karim, 2018, Numerical study of the ignition front propagation of different pelletised biomass in a packed bed furnace, Appl. Therm. Eng., 128, 772, 10.1016/j.applthermaleng.2017.09.061 Gómez, 2017, Dynamic simulation of a biomass domestic boiler under thermally thick considerations, Energy Convers. Manage., 140, 260, 10.1016/j.enconman.2017.03.006 Chapela, 2017, Effect of the turbulence–chemistry interaction in packed-bed biomass combustion, Energy Fuels, 31, 9967, 10.1021/acs.energyfuels.7b00516 Bermúdez, 2020, Three-dimensional CFD simulation of a large-scale grate-fired biomass furnace, Fuel Process. Technol., 198, 106219, 10.1016/j.fuproc.2019.106219 Wójcik, 2019, The use of TLS and UAV methods for measurement of the repose angle of granular materials in terrain conditions, Measurement, 146, 780, 10.1016/j.measurement.2019.07.015 Bernard Cambou, 2012, Micromechanics of granular materials, Int. J. Eng. Sci Beakawi Al-Hashemi, 2018, A review on the angle of repose of granular materials, Powder Technol., 330, 397, 10.1016/j.powtec.2018.02.003 Wu, 2011, Physical properties of solid biomass, Biomass Bioenergy, 35, 2093, 10.1016/j.biombioe.2011.02.020 Zhou, 2014, Angle of repose and stress distribution of sandpiles formed with ellipsoidal particles, Granular Matter, 16, 695, 10.1007/s10035-014-0522-4 Cunha, 2016, Repose angle of monoparticles and binary mixture: an experimental and simulation study, Powder Technol., 303, 203, 10.1016/j.powtec.2016.09.023 Zhou, 2001, Numerical investigation of the angle of repose of monosized spheres, Phys. Rev. E, 64, 10.1103/PhysRevE.64.021301 Wang, 2010, Experimental study on the angle of repose of pulverized coal, Particuology, 8, 482, 10.1016/j.partic.2010.07.008 Carr, 1965, Classifying flow properties of solids, BritishChem.Eng. Carr, 1970, Particle behaviour, storage and flow, BritishChem.Eng. Roessler, 2019, DEM parameter calibration of cohesive bulk materials using a simple angle of repose test, Particuology, 45, 105, 10.1016/j.partic.2018.08.005 Pachón-Morales, 2019, DEM modelling for flow of cohesive lignocellulosic biomass powders: model calibration using bulk tests, Adv. Powder Technol., 30, 732, 10.1016/j.apt.2019.01.003 Ström, 2015, Challenges and opportunities in the eulerian approach to numerical simulations of fixed-bed combustion of biomass, Procedia Eng., 102, 1573, 10.1016/j.proeng.2015.01.293