Improving reusability along the data life cycle: a regulatory circuits case study
Tóm tắt
In life sciences, there has been a long-standing effort of standardization and integration of reference datasets and databases. Despite these efforts, many studies data are provided using specific and non-standard formats. This hampers the capacity to reuse the studies data in other pipelines, the capacity to reuse the pipelines results in other studies, and the capacity to enrich the data with additional information. The Regulatory Circuits project is one of the largest efforts for integrating human cell genomics data to predict tissue-specific transcription factor-genes interaction networks. In spite of its success, it exhibits the usual shortcomings limiting its update, its reuse (as a whole or partially), and its extension with new data samples. To address these limitations, the resource has previously been integrated in an RDF triplestore so that TF-gene interaction networks could be generated with two SPARQL queries. However, this triplestore did not store the computed networks and did not integrate metadata about tissues and samples, therefore limiting the reuse of this dataset. In particular, it does not enable to reuse only a portion of Regulatory Circuits if a study focuses on a subset of the tissues, nor to combine the samples described in the datasets with samples from other studies. Overall, these limitations advocate for the design of a complete, flexible and reusable representation of the Regulatory Circuits dataset based on Semantic Web technologies. We provide a modular RDF representation of the Regulatory Circuits, called Linked Extended Regulatory Circuits (LERC). It consists in (i) descriptions of biological and experimental context mapped to the references databases, (ii) annotations about TF-gene interactions at the sample level for 808 samples, (iii) annotations about TF-gene interactions at the tissue level for 394 tissues, (iv) metadata connecting the knowledge graphs cited above. LERC is based on a modular organisation into 1,205 RDF named graphs for representing the biological data, the sample-specific and the tissue-specific networks, and the corresponding metadata. In total it contains 3,910,794,050 triples and is available as a SPARQL endpoint. The flexible and modular architecture of LERC supports biologically-relevant SPARQL queries. It allows an easy and fast querying of the resources related to the initial Regulatory Circuits datasets and facilitates its reuse in other studies.
https://regulatorycircuits-lod.genouest.org
Tài liệu tham khảo
Aldhous P. Managing the genome data deluge. Science (New York, N.Y.) 1993; 262(5133):502–3.
Stein LD. Integrating biological databases. Nat Rev Genet. 2003; 4(5):337–45.
Cannata N, Merelli E, Altman RB. Time to organize the bioinformatics resourceome. PLoS Comput Biol. 2005; 1(7):0531–3.
Al Kawam A, Sen A, Datta A, Dickey N. Understanding the bioinformatics challenges of integrating genomics into healthcare. IEEE J Biomed Health Inform. 2018; 22(5):1672–83. https://doi.org/10.1109/JBHI.2017.2778263.
Marbach D, Lamparter D, Quon G, Kellis M, Kutalik Z, Bergmann S. Regulatory Circuits Projects. 2016. http://regulatorycircuits.org/. Accessed 18 Feb 2021.
Marbach D, Lamparter D, Quon G, Kellis M, Kutalik Z, Bergmann S. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases. Nat Methods. 2016; 13(4):366.
Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al.An atlas of active enhancers across human cell types and tissues. Nature. 2014; 507(7493):455.
ENCODE Project Consortium, et al.An integrated encyclopedia of dna elements in the human genome. Nature. 2012; 489(7414):57.
Blake JA, Bult CJ. Beyond the data deluge: Data integration and bio-ontologies. J Biomed Inform. 2006; 39(3):314–20.
Antezana E, Kuiper M, Mironov V. Biological knowledge management: the emerging role of the semantic web technologies. Brief Bioinform. 2009; 10(4):392–407.
Chen H, Yu T, Chen JY. Semantic web meets integrative biology: a survey. Brief Bioinform. 2012; 14(1):109–25.
Kamdar MR, Fernández JD, Polleres A, Tudorache T, Musen MA. Enabling web-scale data integration in biomedicine through linked open data. NPJ Digit Med. 2019; 2:90. https://doi.org/10.1038/s41746-019-0162-5.
Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R, Schatz MC, Sinha S, Robinson GE. Big data: Astronomical or genomical?. PLoS Biol. 2015; 13(7):1002195.
Louarn M, Chatonnet F, Garnier X, Fest T, Siegel A, Dameron O. Increasing life science resources re-usability using semantic web technologies. In: Proceedings of the 15th IEEE International eScience Conference, San Diego. New York City: IEEE: 2019.
Louarn M, Chatonnet F, Garnier X, Fest T, Siegel A, Faron C, Dameron O. Regulatory Circuits LOD. 2020. https://regulatorycircuits-lod.genouest.org/.
UniProt Consortium. Uniprot: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021; 49(D1):480–9. https://doi.org/10.1093/nar/gkaa1100.
Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J, Billis K, Boddu S, Charkhchi M, Cummins C, Da Rin Fioretto L, Davidson C, Dodiya K, El Houdaigui B, Fatima R, Gall A, Garcia Giron C, Grego T, Guijarro-Clarke C, Haggerty L, Hemrom A, Hourlier T, Izuogu OG, Juettemann T, Kaikala V, Kay M, Lavidas I, Le T, Lemos D, Gonzalez Martinez J, Marug’an JC, Maurel T, McMahon AC, Mohanan S, Moore B, Muffato M, Oheh DN, Paraschas D, Parker A, Parton A, Prosovetskaia I, Sakthivel MP, Salam AIA, Schmitt BM, Schuilenburg H, Sheppard D, Steed E, Szpak M, Szuba M, Taylor K, Thormann A, Threadgold G, Walts B, Winterbottom A, Chakiachvili M, Chaubal A, De Silva N, Flint B, Frankish A, Hunt SE, IIsley GR, Langridge N, Loveland JE, Martin FJ, Mudge JM, Morales J, Perry E, Ruffier M, Tate J, Thybert D, Trevanion SJ, Cunningham F, Yates AD, Zerbino DR, Flicek P. Ensembl 2021. Nucleic Acids Res. 2021; 49(D1):884–91. https://doi.org/10.1093/nar/gkaa942.
Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, et al.The fair guiding principles for scientific data management and stewardship. Sci Data. 2016; 3:160018.
Stephens S, LaVigna D, DiLascio M, Luciano J. Aggregation of bioinformatics data using semantic web technology. J Web Semant. 2006; 4(3):216–21.
Chen H, VanBuren V. A review of integration strategies to support gene regulatory network construction. Sci World J. 2012; 2012:435257.
Han H, Cho J-W, Lee S, Yun A, Kim H, Bae D, Yang S, Kim CY, Lee M, Kim E, et al.Trrust v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018; 46(D1):380–6.
Licata L, Lo Surdo P, Iannuccelli M, Palma A, Micarelli E, Perfetto L, Peluso D, Calderone A, Castagnoli L, Cesareni G. Signor 2.0, the signaling network open resource 2.0: 2019 update. Nucleic Acids Res. 2020; 48(D1):504–10.
Abugessaisa I, Shimoji H, Sahin S, Kondo A, Harshbarger J, Lizio M, et al.Fantom5 transcriptome catalog of cellular states based on semantic mediawiki. Database. 2016;2016. https://doi.org/10.1093/database/baw105.
Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S, et al.Gateways to the fantom5 promoter level mammalian expression atlas. Genome Biol. 2015; 16(1):22.
Louarn M, Chatonnet F, Garnier X, Fest T, Siegel A, Faron C, Dameron O. LERC: Linked Extended Regulatory Circuits Dataset on Interactions Between Transcription Factors and Genes. 2021. https://doi.org/10.5281/zenodo.4889146.