Improving quantum state transfer efficiency and entanglement distribution in binary tree spin network through incomplete collapsing measurements
Tóm tắt
We propose a mechanism for quantum state transfer (QST) over a binary tree spin network on the basis of incomplete collapsing measurements. To this aim, we perform initially a weak measurement (WM) on the central qubit of the binary tree network where the state of our concern has been prepared on that qubit. After the time evolution of the whole system, a quantum measurement reversal (QMR) is performed on a chosen target qubit. By taking optimal value for the strength of QMR, it is shown that the QST quality from the sending qubit to any typical target qubit on the binary tree is considerably improved in terms of the WM strength. Also, we show that how high-quality entanglement distribution over the binary tree network is achievable by using this approach.
Tài liệu tham khảo
Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)
Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)
Albanese, C., Christandl, M., Datta, N., Ekert, A.: Mirror inversion of quantum states in linear registers. Phys. Rev. Lett. 93, 230502 (2004)
Nikolopoulos, G.M.: Directional coupling for quantum computing and communication. Phys. Rev. Lett. 101, 200502 (2008)
Di Franco, C., Paternostro, M., Kim, M.S.: Perfect state transfer on a spin chain without state initialization. Phys. Rev. Lett. 101, 230502 (2008)
Markiewicz, M., Wiesniak, M.: Perfect state transfer without state initialization and remote collaboration. Phys. Rev. A 79, 054304 (2009)
Wang, Y., Shuang, F., Rabitz, H.: All possible coupling schemes in XY spin chains for perfect state transfer. Phys. Rev. A 84, 012307 (2011)
Vinet, L., Zhedanov, A.: How to construct spin chains with perfect state transfer. Phys. Rev. A 85, 012323 (2012)
Wjcik, A., Luczak, T., Kurzynski, P., Grudka, A., Gdala, T., Bednarska, M.: Unmodulated spin chains as universal quantum wires. Phys. Rev. A 72, 034303 (2005)
Feldman, E.B., Kuznetsova, E.I., Zenchuk, A.I.: High-probability state transfer in spin-1/2 chains: analytical and numerical approaches. Phys. Rev. A 82, 022332 (2010)
Lorenzo, S., Apollaro, T.J.G., Sindona, A., Plastina, F.: Quantum-state transfer via resonant tunneling through local-field-induced barriers. Phys. Rev. A 87, 042313 (2013)
Pemberton-Ross, P.J., Kay, A.: Perfect quantum routing in regular spin networks. Phys. Rev. Lett. 106, 020503 (2011)
Karimipour, V., Sarmadi Rad, M., Asoudeh, M.: Perfect quantum state transfer in two-and three-dimensional structures. Phys. Rev. A 85, 010302(R) (2012)
Behzadi, N., Kazemi Rudsary, S., Ahansaz Salmasi, B.: Perfect routing of quantum information in regular cavity QED networks. Eur. Phys. J. D 67, 252 (2013)
Paganelli, S., Lorenzo, S., Apollaro, T.J.G., Plastina, F., Giorgi, G.L.: Routing quantum information in spin chains. Phys. Rev. A 87, 062309 (2013)
Korzekwa, K., Machnikowski, P., Horodecki, P.: Quantum-state transfer in spin chains via isolated resonance of terminal spins. Phys. Rev. A 89, 062301 (2014)
Liu, Y., Zhou, D.L.: Optimized quantum state transfer through an XY spin chain. Phys. Rev. A 89, 062331 (2014)
Zhan, X., Qin, H., Z-h, Bian, Li, J., Xue, P.: Perfect state transfer and efficient quantum routing: a discrete-time quantum-walk approach. Phys. Rev. A 90, 012331 (2014)
Qin, W., Wang, C., Zhang, X.: Protected quantum-state transfer in decoherence-free subspaces. Phys. Rev. A 91, 042303 (2015)
Ashhab, S.: Quantum state transfer in a disordered one-dimensional lattice. Phys. Rev. A 92, 062305 (2015)
Stefanak, M., Skoupy, S.: Perfect state transfer by means of discrete-time quantum walk search algorithms on highly symmetric graphs. Phys. Rev. A 94, 022301 (2016)
Kay, A.: Basics of perfect communication through quantum networks. Phys. Rev. A 84, 022337 (2011)
Tsomokos, D.I., Plenio, M.B., de Vega, I., Huelga, S.F.: State transfer in highly connected networks and a quantum Babinet principle. Phys. Rev. A 78, 062310 (2008)
Bernasconi, A., Godsil, C., Severini, S.: Quantum networks on cubelike graphs. Phys. Rev. A 78, 052320 (2008)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)
Jordan, A.N., Korotkov, A.N.: Uncollapsing the wavefunction by undoing quantum measurements. Contemp. Phys. 51, 125 (2010)
Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)
Tamir, B., Cohen, E.: Introduction to weak measurements and weak values. Quanta 2, 7 (2013)
Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., Oconnell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)
Kim, Y.-S., Cho, Y.-W., Ra, Y.-S., Kim, Y.-H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Exp. 17, 11978 (2009)
Basit, A., Badshah, F., Ali, H., Ge, G.-Q.: Protecting quantum coherence and discord from decoherence of depolarizing noise via weak measurement and measurement reversal. EPL 118, 30002 (2017)
Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)
Zou, W.-J., Li, Y.-H., Wang, S.-C., Cao, Y., Ren, J.-G., Yin, J., Peng, C.-Z., Wang, X.-B., Pan, J.-W.: Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal. Phys. Rev. A 95, 042342 (2017)
Yune, J., Hong, K.-H., Lim, H.-T., Lee, J.-C., Kwon, O., Han, S.-W., Kim, Y.-S., Moon, S., Kim, Y.-H.: Quantum discord protection from amplitude damping decoherence. Opt. Exp. 23, 26013 (2015)
Behzadi, N., Faizi, E., Heibati, O.: Quantum discord protection of a two-qutrit V-type atomic system from decoherence by partially collapsing measurements. Quantum Inf. Process. 16, 257 (2017)
Knuth, D.: The Art of Computer Programming. Addison-Wesley, Boston (1997)
Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process 1, 35 (2002)
Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: in: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of computing, pp. 59-68. ACM (2003)
He, Z., Ishizuka, T., Jiangi, D.L.: Dendritic architectures for design of photo-and spin-functional nanomaterials. Polym. J. 39, 889 (2007)
Adronov, A., Frechet, J.M.J.: Light-harvesting dendrimers. Chem. Commun. 18, 1701 (2000)
Bradshaw, D.S., Andrews, D.L.: Mechanisms of light energy harvesting in dendrimers and hyperbranched polymers. Polymers 3, 2053 (2011)
Tufarelli, T., Giovannetti, V.: High-fidelity state transfer in binary-tree spin networks. Phys. Rev. A 79, 022313 (2009)
Wootters, W.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Katz, N., Ansmann, M., Bialczak, R.C., Lucero, E., McDermott, R., Neeley, M., Steffen, M., Weig, E.M., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498 (2006)
Sillanpää, M.A., Park, J.I., Simmonds, R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438 (2007)