Improving phosphorus use efficiency: a complex trait with emerging opportunities

Plant Journal - Tập 90 Số 5 - Trang 868-885 - 2017
Sigrid Heuer1, Roberto A. Gaxiola2, Rhiannon K. Schilling3, Luís Herrera‐Estrella4, Damar López‐Arredondo5, Matthias Wissuwa6, Emmanuel Delhaize7, Hatem Rouached8
1University of Adelaide / Australian Centre for Plant Functional Genomics (ACPFG) PMB 1 Glen Osmond 5064 Australia
2Arizona State University, Tempe, AZ USA
3University of Adelaide (Adelaide, South Australia, 5005 Australia - Australia)
4LANGEBIO Irapuato Mexico
5Stela Genomics Mexico Irapuato Mexico
6JIRCAS - Japan International Research Center for Agricultural Sciences (Japan)
7CSIRO Agriculture and Food, Canberra, Australia
8CNRS INRA Montpellier France

Tóm tắt

SummaryPhosphorus (P) is one of the essential nutrients for plants, and is indispensable for plant growth and development. P deficiency severely limits crop yield, and regular fertilizer applications are required to obtain high yields and to prevent soil degradation. To access P from the soil, plants have evolved high‐ and low‐affinity Pi transporters and the ability to induce root architectural changes to forage P. Also, adjustments of numerous cellular processes are triggered by the P starvation response, a tightly regulated process in plants. With the increasing demand for food as a result of a growing population, the demand for P fertilizer is steadily increasing. Given the high costs of fertilizers and in light of the fact that phosphate rock, the source of P fertilizer, is a finite natural resource, there is a need to enhance P fertilizer use efficiency in agricultural systems and to develop plants with enhanced Pi uptake and internal P‐use efficiency (PUE). In this review we will provide an overview of continuing relevant research and highlight different approaches towards developing crops with enhanced PUE. In this context, we will summarize our current understanding of root responses to low phosphorus conditions and will emphasize the importance of combining PUE with tolerance of other stresses, such as aluminum toxicity. Of the many genes associated with Pi deficiency, this review will focus on those that hold promise or are already at an advanced stage of testing (OsPSTOL1, AVP1, PHO1 and OsPHT1;6). Finally, an update is provided on the progress made exploring alternative technologies, such as phosphite fertilizer.

Từ khóa


Tài liệu tham khảo

10.1023/A:1015792723288

10.1126/science.1118642

10.1111/j.1365-313X.2008.03726.x

10.3389/fpls.2016.00415

10.1104/pp.114.245423

10.1186/s12870-015-0561-y

10.1016/j.plantsci.2008.10.009

10.2307/2656994

10.1105/tpc.110.081067

10.1038/srep26439

Bot A.J., 2000, Land resource potential and constraints at regional and country levels. Food and Agriculture Organisation, FAO, Rome, World Soil Resources Report, 90, 114p

10.2174/1389202917666160331201812

10.3389/fpls.2015.00290

10.1111/j.1469-8137.2006.01935.x

10.1080/00288233.1981.10423397

Carvalho G., 2016, Back to acid soil fields: The citrate transporter SbMATE is a major asset for sustainable grain yield for sorghum cultivated on acid soils, G3‐Genes Genom Genet., 6, 475, 10.1534/g3.115.025791

10.1104/pp.111.175174

10.1104/pp.111.175471

10.1111/j.1467-7652.2009.00403.x

10.1016/j.tplants.2012.02.008

10.1111/j.1469-8137.2012.04183.x

10.1093/jxb/erv223

10.1016/j.pbi.2007.10.003

10.1038/cr.2009.109

Dobermann A., 2000, Rice: Nutrient Disorders & Nutrient Management. Handbook Series

10.1007/BF00704311

10.1105/tpc.111.085415

10.1038/ng2079

10.1038/nature01387

10.1038/ncomms1726

10.1073/pnas.0807821105

10.1046/j.1365-3040.2003.01093.x

10.1038/nature11346

10.1073/pnas.191389398

10.1104/pp.020009

10.1104/pp.112.195701

10.1016/j.tibtech.2015.12.016

10.1016/j.molp.2015.09.008

10.1016/j.molp.2015.12.012

10.1146/annurev-cellbio-101512-122413

10.1016/j.geoderma.2014.07.019

10.1105/tpc.000745

10.1093/aob/mch156

10.1111/nph.13615

10.1111/j.1467-7652.2009.00415.x

10.1016/j.cell.2009.07.004

10.1093/emboj/19.22.6207

10.1104/pp.111.178459

10.1104/pp.114.243949

10.1098/rstb.2011.0241

10.1093/jxb/erw035

Jeong K., 2015, Genetic diversity for mycorrhizal symbiosis and phosphate transporters in rice, JIPB, 57, 969, 10.1111/jipb.12435

10.7554/eLife.14577

10.1093/jxb/erq464

10.1093/oxfordjournals.pcp.a029450

10.1105/tpc.113.122101

10.1104/pp.15.01409

10.1093/jxb/ert444

10.1016/j.devcel.2010.05.008

10.1093/conphys/cot010

10.1098/rstb.2012.0003

10.1186/s12870-014-0206-6

10.1104/pp.108.116269

10.1038/ncomms11095

10.1111/pbi.12564

10.1038/nbt.2346

10.1111/pbi.12063

10.1146/annurev-arplant-050213-035949

10.1104/pp.111.175414

10.1073/pnas.1010808108

10.1016/S0005-2736(00)00130-9

10.1104/pp.111.186221

10.1111/tpj.13047

10.1038/srep24941

10.1111/j.1365-313X.2009.04103.x

10.1071/CP14191

10.1038/ncomms7274

10.1071/FP15041

10.1186/s13007-015-0060-z

10.1104/pp.15.00145

10.1016/j.devcel.2015.02.007

10.1104/pp.105.060061

10.1007/s00299-016-1942-x

10.3389/fpls.2015.01224

10.1093/aob/mcs285

10.1007/s00425-006-0379-9

10.1007/s11103-013-0106-4

10.1016/j.plantsci.2011.03.008

10.1104/pp.112.212852

10.1016/S0014-5793(00)02266-3

10.1093/jxb/eru535

10.1007/s12284-009-9032-0

10.1007/s00122-014-2306-y

10.1007/s11104-015-2460-2

10.1111/j.1467-7652.2010.00535.x

10.1073/pnas.202474599

10.1371/journal.pone.0043501

10.1186/s13007-015-0084-4

10.1104/pp.114.254342

10.1104/pp.111.175281

10.1104/pp.97.3.1087

10.1104/pp.109.144626

10.1073/pnas.1404654111

10.1016/j.plantsci.2009.06.012

10.1016/j.arabjc.2013.10.007

10.1093/pcp/pcv035

Regmi K.C., 2015, Apoplasmic loading in the rice phloem supported by the presence of sucrose synthase and plasma membrane‐localized proton pyrophosphatase, Ann. Bot., 174, 1

10.1104/pp.16.00397

Rose T.J., 2012, Rethinking internal phosphorus utilization efficiency (PUE): A new approach is needed to improve PUE in grain crops, Adv. Agron., 116, 183

10.1016/j.fcr.2010.07.004

10.3389/fpls.2013.00444

10.1007/s11104-015-2565-7

10.1111/j.1365-313X.2010.04442.x

10.1111/j.1365-313X.2003.01991.x

10.1111/pbi.12145

10.1111/j.1469-8137.2011.04002.x

10.1104/pp.75.3.862

10.1111/j.1365-313X.2007.03108.x

10.1038/ng2041

10.1111/j.1365-313X.2004.02005.x

Topp C.N., 2016, How can we harness quantitative genetic variation in crop root systems for agricultural improvement?, JIPB, 58, 213, 10.1111/jipb.12470

Van Kauwenbergh S.J., 2010, World Phosphate Rock Reserves and Resources. International Fertilizer Development Center, IFDC Technical Bulletin No. 75, 58

10.1186/s12284-016-0102-9

10.1105/tpc.113.114827

10.1126/science.1103178

10.1104/pp.103.037945

10.1073/pnas.1404680111

Wang C., 2015, Rice SPX‐Major Facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice, Plant Physiol., 169, 2822

10.1093/jxb/erv517

10.1104/pp.108.118562

10.1104/pp.15.00975

10.1126/science.aad9858

10.1046/j.1439-0523.2001.00561.x

10.1007/s00122-002-1051-9

10.1371/journal.pone.0124215

10.1093/jxb/erw061

10.1016/j.scienta.2014.07.037

10.1093/aob/mcq015

10.1111/j.1467-7652.2007.00281.x

10.1093/jxb/eru149

10.1007/s10142-011-0209-4

10.1104/pp.105.063115

10.1038/ng.529

Yumnam J.S., 2015, Allele mining across two low‐P tolerant genes PSTOL1 and PupK20‐2 reveals novel haplotypes in rice genotypes adapted to acidic soils, Plant Genet Resour., 1, 1

10.1007/s11104-014-2168-8